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Abstract

A solution method is derived to determine the stress intensity factors for both an internal crack and an edge crack in

an orthotropic substrate that is reinforced on its boundary by a finite-length orthotropic plate. The method utilizes the

Green�s functions for a pair of dislocations and a concentrated force on the boundary while invoking the concept of

superposition. Enforcing the traction-free boundary condition along the crack surfaces and the continuity of dis-

placement gradients along the plate/substrate interface results in a coupled system of singular integral equations. An

asymptotic analysis of the kernels in these equations for the region of the junction point between the plate corner and

the substrate boundary reveals the strength of the singularity in the case of an edge crack. The numerical solution of the

integral equations provides results for the stress intensity factors for both an internal crack and an edge crack per-

pendicular to the substrate boundary and aligned with one of the corners of the plate. The present results have been

validated against previously published stress intensity factors for an internal crack and an edge crack in an isotropic

substrate.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Relatively thin elastic layers bonded to elastic substrates, known as cover plates, reinforcements, coat-

ings, and thin films, have a wide variety of engineering applications ranging from structural mechanics,

thermal shielding and other forms of environmental protections to microelectronics. From the viewpoint of

failure mechanics the questions of primary interest regarding these components are usually the accuracy of

modeling and analysis of the likely failure processes. Thermally or mechanically induced loading failures

that are often encountered in practice are cracking of the substrate at the edges of the reinforcement layer,
de-bonding along the layer/substrate interface, and cracking of the layer.
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Concerning microelectronics, the nature of the plate/substrate residual stresses was investigated by Hu

(1979) and Isomae (1981, 1985), and the representation of these residual stresses in terms of far field stresses

on the substrate was discussed by Erdogan and Joseph (1990). It is essential to investigate the stress field in

order to analyze physical effects such as dislocation generation, film debonding and film and substrate
distortion and cracking. Although the finite element analysis is capable of capturing the singular stress

behavior near a corner or a crack tip in homogeneous regions with a refined mesh of conventional elements,

it fails to capture the appropriate singular behavior near a corner or a crack tip at the junction of dissimilar

materials.

Even without taking into account the possible inelastic and time-temperature effects, the actual three-

dimensional problem of bonded layers of finite lengths for various crack geometries is analytically in-

tractable. Depending on the relative dimensions of the adherents and the degree of accuracy required of the

analysis, generally the problem is modeled under various approximating assumptions. The first set of as-
sumptions, which are made largely for mathematical expediency, concerns the plane strain or axi-symmetry

in loading and geometry and the piecewise homogeneity of the medium. The second set of assumptions

concerns the mechanical behavior of the materials and usually requires that the adherents be linearly elastic,

time-independent and isotropic, orthotropic, or anisotropic. The third group of assumptions involves

certain simplifications regarding the distribution of the displacements or stresses in the non-homogeneous

medium. If, for example, the thicknesses of the adherents are very small compared with the in-plane di-

mensions of the medium, then it may be possible to neglect all bending effects and model the adherents as

‘‘membranes’’ (Goodier and Hsu, 1954; Muki and Sternberg, 1968). The membrane model does, however,
have a major drawback, in that it neglects the normal component of the load transfer along the interface,

which is known to play an important role in the de-bonding process. Thus, despite relatively small adherent

thicknesses, if the bending stiffness of the components is not negligible, a ‘‘plate’’ model may be employed

for the adherents (Goland and Reissner, 1944; Delale et al., 1981). Other previous models treat the cover

plate as a ‘‘membrane’’ and the substrate as an elastic continuum having finite (Erdogan and Civelek, 1974)

or infinite thickness (Erdogan and Gupta, 1971a; Erdogan, 1971; Erdogan and Joseph, 1990) or assume

both adherents to be elastic continua (Erdogan and Gupta, 1971b; Erdogan and Arin, 1972; Hutchinson

and Suo, 1991). The emphasis in most of these studies was on de-bonding. The question of film fracture was
briefly discussed by Erdogan and Joseph (1990). The problem of the substrate cracking at the edge of a

membrane reinforcement was addressed by Delale and Erdogan (1982) for isotropic materials, and later by

Mahajan et al. (1993) for orthotropic materials because Isomae (1981) reported that both the film and

substrate demonstrate significant anisotropy in their elastic properties.

The previous work by Delale and Erdogan (1982) and Mahajan et al. (1993) employed a membrane

model assuming that bending stiffness of the cover plate is negligible. This assumption concerns only the

shear stresses while disregarding the normal stresses. Also, it removes the power singularity at the junction

of plate/substrate junction. Furthermore, Erdogan and Joseph (1990) demonstrated that the stress singu-
larity predicted by the membrane model can have a maximum difference of nearly 20 percent from the

predictions of the more realistic plate model. Unlike the membrane model, the plate model with a bending

stiffness captures the complex singular behavior of the coupled normal and shearing stresses. In the case of

a membrane model, the shear stress has a square root singularity at the film edge. The magnitude of this

stress intensity factor is dependent on a stiffness parameter that is a measure of the relative stiffnesses of the

half-plane and the film. Delale and Erdogan (1982) concluded that the crack tends to propagate approxi-

mately normal to the half-plane surface. This conclusion is not entirely correct and the correct direction was

determined by Erdogan and Joseph (1990) reporting that very near the film edge, the crack in the substrate
tends to curve either towards the film or away from the film depending on the applied load on the film-

substrate combination.

In this paper, the cracking of the substrate is considered by assuming that (i) the substrate is a semi-

infinite orthotropic medium, (ii) the reinforcement is modeled as an orthotropic ‘‘plate,’’ and (iii) the plane
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of orthotropy perpendicular to the boundary is also the plane of weak fracture resistance in the substrate,

and hence the crack starts at the end point of the plate reinforcement and propagates perpendicular to the

boundary.
2. Problem statement

An orthotropic substrate having either an internal or an edge crack is reinforced by an orthotropic plate

as described in Fig. 1. The substrate is semi-infinite in extent, and the plate has a thickness of h and a length
of 2a. The crack aligned with the right edge of the plate is perpendicular to the substrate boundary. In the

case of an internal crack, the depth of the upper and lower crack tips from the boundary are denoted by c
and d, leading to a crack length of ðd � cÞ. In the case of an edge crack, the parameter c becomes zero. The

crack surfaces are traction free and the plate/substrate interface is perfectly bonded.

The substrate is subjected to a uniform stress, r0, at infinity [i.e., ryyðx;�1Þ ¼ r0] arising from a possible

displacement mismatch along the plate/substrate interface (e.g. temperature changes) as suggested by Er-

dogan and Joseph (1990). The geometry of the medium and the applied loads are such that plane strain

conditions prevail. A Cartesian coordinate system ðx; yÞ is located at the junction of plate edge and
Fig. 1. Geometry of the orthotropic substrate reinforced by a plate containing an (a) internal crack and (b) edge crack.
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boundary of the substrate. It coincides with the principal axes of orthotropy for both the substrate and

plate. The relevant engineering material constants for the plate are specified by Eyy , Gxy , vyz, and vzy , and the

substrate is characterized by stiffness coefficients, Cij, with ði; j ¼ 1; 2; 6Þ. The displacement components in

ðx; yÞ directions in the plate and the substrate are denoted by ðU ; V Þ and ðu; vÞ, respectively. The stress
components in the substrate are denoted by rab, with a; b ¼ x; y. The problem posed in this study is to

determine the stress intensity factors associated with both the internal and edge cracks and the two corners

of the reinforcement plate.

Although the solution of the resulting integral equations for the case of an internal crack is rather well-

established, the physical assumptions concerning the edge crack lead to an integral equation of the 2nd kind

with non-conjugate singularities, i.e., its index is not equal to 1, )1 or 0. The commonly employed tech-

niques developed by Erdogan and his co-workers (1969, 1972 and 1973) and Theocaris and Ioakimides

(1977) break down because of the presence of non-conjugate singularities at the edges. The specific con-
tribution of this paper is the extraction of the non-conjugate singularities and the solution of the resulting

coupled integral equations.
3. Formulation of the problem

Subjected to the conditions of traction-free crack surfaces and compatibility along the plate/substrate

interface, the stress field and displacement gradients in the substrate with a crack can be composed of
three loading conditions: (1) a dislocation at a point ðx1; y1Þ in the substrate having a Burger�s vector, b

with components f1 and f2 parallel and perpendicular to the boundary, (2) a concentrated force acting at

a point ð0; y0Þ on the boundary of the substrate having components f3 and f4 parallel and perpendicular

to the boundary, and (3) the applied load of ryyðx;�1Þ ¼ r0 on the substrate. In view of the concept of

superposition, the stress field and the displacement gradients in the substrate can be expressed in the

form
rxxðx; yÞ ¼ K11f1 þ K12f2 þ K13f3 þ K14f4; ð1aÞ

rxyðx; yÞ ¼ K21f1 þ K22f2 þ K23f3 þ K24f4; ð1bÞ

ryyðx; yÞ ¼ K31f1 þ K32f2 þ K33f3 þ K34f4 þ r0 ð1cÞ
and
o

oy
uðx; yÞ ¼ M11f1 þM12f2 þM13f3 þM14f4; ð2aÞ

o

oy
vðx; yÞ ¼ M21f1 þM22f2 þM23f3 þM24f4 þ b22r0; ð2bÞ
where f1, f2, f3, and f4 are unknown distributed functions and Kij and Mij are the Green�s functions, whose
explicit forms are given in Appendix A. The term b22r0 represents the displacement gradient arising from

the loading of ryyðx;�1Þ ¼ r0 on the substrate in the absence of a crack, and the compliance coefficient
b22 ¼ C11=ðC11C22 � C2

12Þ.
Traction-free crack surfaces are enforced by requiring that
ryyðx;�0Þ ¼ 0; c < x < d; ð3aÞ

rxyðx;�0Þ ¼ 0; c < x < d: ð3bÞ
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The compatibility conditions along the plate/substrate interface are satisfied by requiring that
o

oy
uð0; yÞ ¼ o

oy
UðyÞ; �2a < y < 0; ð4aÞ
o

oy
vð0; yÞ ¼ o

oy
V ðh=2; yÞ; �2a < y < 0; ð4bÞ
where the explicit form of the displacement gradients in the plate in terms of the unknown functions f3, and
f4 are derived in Appendix B.

The dislocation densities f1 and f2 are related to the crack surface displacements by
f1ðxÞ ¼ � o

ox
½vðx;þ0Þ � vðx;�0Þ	; ð5aÞ
f2ðxÞ ¼ � o

ox
½uðx;þ0Þ � uðx;�0Þ	: ð5bÞ
Therefore, in the case of an internal crack, the single-valuedness condition of displacements requires that
Z d

c
f1ðtÞdt ¼ 0; ð6aÞ
Z d

c
f2ðtÞdt ¼ 0: ð6bÞ
However, these constraint conditions are not applicable in the case of an edge crack.

The surface tractions acting on the reinforcement plate (shear and normal stresses along the interface

between the plate and substrate) are defined as
rxyð0; y0Þ ¼ f3ðy0Þ; rxxð0; y0Þ ¼ f4ðy0Þ; �2a < y0 < 0 ð7Þ
and they must satisfy the force and moment equilibrium conditions leading to
Z 0

�2a
f3ðy0Þdy0 ¼ 0; ð8aÞ
Z 0

�2a
f4ðy0Þdy0 ¼ 0; ð8bÞ
Z 0

�2a
y0f4ðy0Þdy0 ¼ 0: ð8cÞ
3.1. Internal crack

Having a continuous distribution of dislocation, b ¼ hf1; f2i, along the crack surfaces, i.e., x1 ¼ t and
y1 ¼ 0 for c < t < d, and enforcing the boundary and compatibility conditions, Eqs. (3) and (4), result in

the following system of singular integral equations:
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1

p

Z d

c

f1ðtÞ
t � x dt þ

Z d

c
N11ðx; tÞf1ðtÞdt þ

Z d

c
N12ðx; tÞf2ðtÞdt þ

Z 0

�2a
N13ðx; y0Þf3ðy0Þdy0

þ
Z 0

�2a
N14ðx; y0Þf4ðy0Þdy0 ¼

2r0

Kn
ðc < x < dÞ; ð9aÞ

1

p

Z d

c

f2ðtÞ
t � x dt þ

Z d

c
N21ðx; tÞf1ðtÞdt þ

Z d

c
N22ðx; tÞf2ðtÞdt þ

Z 0

�2a
N23ðx; y0Þf3ðy0Þdy0

þ
Z 0

�2a
N24ðx; y0Þf4ðy0Þdy0 ¼ 0 ðc < x < dÞ; ð9bÞ

1

p

Z 0

�2a

f3ðy0Þ
y0 � y

dy0 �
S1
S2
f4ðyÞ þ

Z d

c
N31ðy; tÞf1ðtÞdt þ

Z d

c
N32ðy; tÞf2ðtÞdt þ

Z 0

�2a
N33ðy; y0Þf3ðy0Þdy0

þ
Z 0

�2a
N34ðy; y0Þf4ðy0Þdy0 ¼

b22r0

S2
ð�2a < y < 0Þ; ð9cÞ

1

p

Z 0

�2a

f4ðy0Þ
y0 � y

dy0 þ
R1

R2

f3ðyÞ þ
Z d

c
N41ðy; tÞf1ðtÞdt þ

Z d

c
N42ðy; tÞf2ðtÞdt þ

Z 0

�2a
N43ðy; y0Þf3ðy0Þdy0

þ
Z 0

�2a
N44ðy; y0Þf4ðy0Þdy0 ¼ �

wyð�2aÞ
R2

ð�2a < y < 0Þ; ð9dÞ
where the parameters and the kernels are given in Appendix A. The last two of these integral equations,
Eqs. (9c) and (9d) are of the second kind and can be combined as follows by multiplying Eq. (9d) by �ig
and adding to (9c) while invoking R1 ¼ S1
1

ip

Z 0

�2a

/ðy0Þ
y0 � y

dy0 � c/ðyÞ þ
Z d

c
M1ðy; tÞf1ðtÞdt þ

Z d

c
M2ðy; tÞf2ðtÞdt þ

Z 0

�2a
M3ðy; y0Þ/ðy0Þdy0

þ
Z 0

�2a
M4ðy; y0Þ/�ðy0Þdy0 ¼

b22r0

S2
þ ig

wyð�2aÞ
R2

ð�2a < y < 0Þ; ð10Þ
where the auxiliary function, /ðyÞ, having /�ðyÞ as its complex conjugate is defined as
/ðyÞ ¼ gf4ðyÞ þ if3ðyÞ; ð11Þ

with g ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
R2=S2

p
and c ¼ R1=

ffiffiffiffiffiffiffiffiffi
R2S2

p
. The known kernels, Miðy; tÞ, are defined in Appendix A. The solution

to the system of singular integral equations given by Eqs. (9a), (9b), and (10) permits the determination of

f1, f2, f3, f4, and wyð�2aÞ subject to the five constraint conditions given in Eqs. (6) and (8). The moment

equilibrium condition (8c) accounts for the unknown rotation, wyð�2aÞ.
In the integral equations, Eqs. (9a) and (9b), the dominant parts of the kernels have only a Cauchy-type

singularity and, therefore, for c > 0, the solutions to f1ðxÞ and f2ðxÞ have the form
Kn
2
f1ðxÞ ¼

U1ðxÞ
ðx� cÞb1ðd � cÞa1

; ð12aÞ

Ke
2
f2ðxÞ ¼

U2ðxÞ
ðx� cÞb2ðd � cÞa2

; ð12bÞ
where a1 ¼ a2 ¼ b1 ¼ b2 ¼ 1=2 and U1 and U2 are unknown bounded functions. The constants Kn and Ke
involving material stiffness coefficients, Cij, are given in Appendix A. As suggested by Muskhelishvili

(1953), the solution to the dominant part of the integral equation of the second kind, Eq. (10), is of the form
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/ðyÞ ¼ U3ðyÞ
ðy þ 2aÞa3ð�yÞb3

; ð13aÞ
with
a3 ¼
1

2
þ ix; b3 ¼

1

2
� ix; with x ¼ 1

2p
ln

1� c
1þ c

� �
ð13bÞ
and U3ðyÞ is an unknown bounded function.

3.2. Edge crack

The integral equations given in Eqs. (9a), (9b), and (10) are also valid in the case of an edge crack for

which c ¼ 0 with the requirement that the junction of plate edge and substrate at the point ðx ¼ 0; y ¼ 0Þ
has a common point of singularity for the unknown functions f1, f2, and /. In view of Eqs. (12) and (13),

the solution forms for the unknown functions f1, f2, and / having a common singularity at ðx ¼ 0; y ¼ 0Þ
can be written as
f1ðtÞ ¼
U1ðtÞ

tbðd � tÞa1 ; 0 < t < d; ð14aÞ
f2ðtÞ ¼
U2ðtÞ

tbðd � tÞa2 ; 0 < t < d; ð14bÞ
/ðy0Þ ¼
U3ðy0Þ

ð�y0Þbðy0 þ 2aÞa3
; �2a < y0 < 0: ð14cÞ
However, the kernels Nij, which are bounded in the closed intervals ½c; d	 and ½�2a; 0	 for c > 0, become

unbounded when the pairs of variables ðx; tÞ, ðx; y0Þ, and ðy; tÞ approach the junction point of ðx ¼ 0; y ¼ 0Þ
simultaneously. Furthermore for c ¼ 0, the kernels of the integral equations are of the generalized Cauchy-

type. For example, by separating into partial fractions, the kernel N11 may be expressed as
pChN11ðx; tÞ ¼
p þ 2

t þ x �
2ð2þ pp1Þ

ðp1 � p2Þðt � p1xÞ
þ 2ð2þ pp2Þ
ðp1 � p2Þðt � p2xÞ

; 0 < ðt; xÞ < d; ð15Þ
where ðp1; p2Þ ¼ �p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4

p
=2 with p ¼ Ch þ 2 and �4 < Ch < 1. The integral appearing in Eq. (9a)

can then be expressed as
Z d

0

N11ðx; tÞf1ðtÞdt ¼
1

Ch

X3
j¼1

Aj
p

Z d

0

f1ðtÞ
t � zj

dt; 0 < x < d: ð16Þ
The variables p1 and p2 are complex conjugates of each other for �4 < Ch < 0, and real and negative for

Ch P 0, meaning that for 0 < x < d, the variables zj are outside the cut ½0; d	 as shown in Fig. 5. In their

polar form, these variables are defined as zj ¼ rjxeihj , with hj ¼ p for j ¼ 1; 2; 3, r1 ¼ 1, r2 ¼ jp1j, and
r3 ¼ jp2j for Ch P 0. For �4 < Ch < 0, the definitions of h2 and h3 become h2 ¼ Argðp1Þ and h3 ¼ Argðp2Þ.

The kernel N11 becomes unbounded as t and zj approach zero simultaneously. Such unbounded kernels

influence the nature of the singularity at the point of ðx ¼ 0; y ¼ 0Þ. The strength of this singularity can

be determined by utilizing the asymptotic expressions for a sectionally holomorphic function given by
Muskhelishvili (1953). The explicit expression for these asymptotic expressions are given in Appendix C.

Based on these expressions, the integral given in Eq. (16) can be rewritten in the form
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Z d

0

N11ðx; tÞf1ðtÞdt ¼
1

Ch

X3
j¼1

Aj
U1ð0Þ
da1

eiðp�hjÞb

sin pb
1

ðrjxÞb
þ hðxÞ: ð17Þ
Similarly, the dominant part of this singular integral equation, Eq. (9a), can be expressed as
1

p

Z d

0

f1ðtÞ
t � x dt ¼

U1ð0Þ
da1

cot pb
xb

� U1ðdÞ
db

cot pa1

ðd � xÞa1 þ G0ðzÞ: ð18Þ
All of the singular terms in the integral equations in Eqs. (9a), (9b), and (10), including those coming from

the generalized Cauchy kernels, such as that given by Eq. (16), can be obtained by using the asymptotic

relations. These integral equations can then be expressed in the form
X8
k¼1

Bjkðb; a1; a2; a3ÞDkðx0Þ þ Hjðx0Þ ¼ 0; j ¼ 1; 2; 3; 4; ð19Þ
where x0 ¼ x or x0 ¼ �y, Bjk are known bounded functions, and Hj represent all bounded and lower order

singular terms. The unknown functions Dk are defined as
ðD1; . . . ;D8Þ ¼
U1ð0Þ
da1xb

;
U1ðdÞ

dbðd � xÞa1 ;
U2ð0Þ
da2xb

;
U2ðdÞ

dbðd � xÞa2 ;
Re½U3ð0Þ	
ð2aÞa3ð�yÞb

;
Im½U3ð0Þ	
ð2aÞa3ð�yÞb

;
Re½U3ðdÞ	

ð2aÞbð2aþ yÞa3
;

Im½U3ðdÞ	
ð2aÞbð2aþ yÞa3

 !

ð20Þ
in which the functions Uj are non-zero at the end points 0, d and �2a. Thus, multiplying Eq. (18) by

ðd � xÞa1 , ðd � xÞa2 , and ð2aþ yÞa3 and letting x approach d and y approach �2a, respectively, results in
cot pa1 ¼ 0; ð21aÞ

cot pa2 ¼ 0; ð21bÞ

cot2 pa3 þ c2 ¼ 0 ð21cÞ
whose solutions lead to
a1 ¼ a2 ¼
1

2
; a3 ¼

1

2
þ ix; x ¼ 1

2p
ln

1� c
1þ c

� �
: ð22Þ
Similarly, multiplying Eq. (18) by xb or yb and letting both x and y approach zero results in
X4
j¼1

RijðbÞLi ¼ 0; i ¼ 1; 2; 3; 4 ð23Þ
in which Rij are known functions and Lj represent the unknown non-zero coefficients defined by
ðL1; L2; L3; L4Þ ¼
U1ð0Þ
da1

;
U2ð0Þ
da2

;
Re½U3ð0Þ	
ð2aÞa3 ;

Im½U3ð0Þ	
ð2aÞa3

� �
: ð24Þ
For example, the expression for R11ðbÞ is obtained from the limiting values of Eqs. (17) and (18) as
R11ðbÞ � lim
x!0

xb
Z d

0

N11ðx; tÞf1ðtÞdt
	

þ 1

p

Z d

0

f1ðtÞ
t � x dt



¼

X3
j¼1

Ajeiðp�hjÞb

Ch sin pbrbi

(
þ cot pb

)
U1ð0Þ
da1

ð25Þ
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leading to
R11ðbÞ ¼ cot pb þ
X3
j¼1

Ajeiðp�hjÞb

Ch sin pb
: ð26Þ
The coefficients Aj are all real for Ch P 0, and only A2 and A3 are complex conjugates of each other for

�4 < Ch < 0, resulting in real values for R11ðbÞ.
Requiring the determinant of the coefficient matrix of the homogeneous system of equations, Eq. (23), to

vanish leads to the determination of the strength of the singularity, b. Unlike the bounded stress state at the

singular point of a membrane reinforcement considered by Delale and Erdogan (1982) and Mahajan et al.

(1993), the characteristic equation, Eq. (23), associated with the plate reinforcement, always has a root in

the strip 0 < Re½b	 < 1, which is real and less than one-half. It should be pointed out that if one considers

the symmetric problem for two identical reinforcements along �2a < y < 0 and 0 < y < 2a, f2 would be

zero; and instead of Eq. (23), a system of three algebraic equations would exist, leading to a simpler

characteristic equation. Despite this, the physics of the problem requires that the value of b to be the same
for both cases. Indeed, this problem was formulated, and it was observed that the two characteristic

equations lead to identical results for b. Details of the asymptotic analysis giving the characteristic equa-

tions for edge crack problems in isotropic and orthotropic half planes reinforced by a single or two

symmetrical plates were given by Mahajan (1991). For a specific value of b rendering the characteristic

equation, Eq. (23) to be zero, the system of equations provides three linearly independent equations in the

form
X3
j¼1

SijðbÞLi ¼ 0; i ¼ 1; 2; 3: ð27Þ
These three equations serve as constraint conditions in the solution of the singular integral equations, Eqs.
(9a), (9b), and (10), with c ¼ 0.

It is worth noting that the results of b found herein from the asymptotic analysis of a ‘‘plate’’ bonded to

a 90-degree elastic wedge, formed where the crack edge meets the plate edge, agree exactly with the con-

tinuum elasticity results obtained for two 90-degree wedges where one of the wedges is perfectly rigid. This

was verified by comparing results for the isotropic case in the present analysis with the results reported by

Bogy (1970). It is in the nature of the plate model adopted in this study that b is completely independent of

the elastic properties of the plate. Because c ¼ R1=
ffiffiffiffiffiffiffiffiffi
R2S2

p
is dependent on the elastic constants of the

substrate only, as observed in Eqs. (13b) and (22), the nature of the singularity at the other end of the plate
y ¼ �2a, which does not involve the edge crack intersecting the surface, is also independent of the elastic

properties of the plate.
4. Solution of the integral equations

Prior to the numerical solution of the coupled integral equations, Eqs. (9a), (9b), and (10), they are

normalized by introducing
x ¼ d � c
2

r þ d þ c
2

; t ¼ d � c
2

r0 þ
d þ c
2

; �1 < ðr; r0Þ < 1; ð28aÞ

y ¼ aðs� 1Þ; y0 ¼ aðs0 � 1Þ; �1 < ðs; s0Þ < 1 ð28bÞ
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leading to
P1
p

Z 1

�1

g1ðr0Þ
r0 � r

dr0 þ
Z 1

�1

H11ðr; r0Þg1ðr0Þdr0 þ
Z 1

�1

H12ðr; r0Þg2ðr0Þdr0 þ
Z 1

�1

H13ðr; s0Þg3ðs0Þds0

þ
Z 1

�1

H14ðr; s0Þg�3ðs0Þds0 ¼ q1ðrÞ ¼
2r0

Kn
; ð29aÞ

P2
p

Z 1

�1

g2ðr0Þ
r0 � r

dr0 þ
Z 1

�1

H21ðr; r0Þg1ðr0Þdr0 þ
Z 1

�1

H22ðr; r0Þg2ðr0Þdr0 þ
Z 1

�1

H23ðr; s0Þg3ðs0Þds0

þ
Z 1

�1

H24ðr; s0Þg�3ðs0Þds0 ¼ q2ðrÞ ¼ 0; ð29bÞ

P3
p

Z 1

�1

g3ðs0Þ
s0 � s

ds0 þ R3g3ðsÞ þ
Z 1

�1

H31ðs; r0Þg1ðr0Þdr0 þ
Z 1

�1

H32ðs; r0Þ; g2ðr0Þdr0 þ
Z 1

�1

H33ðs; s0Þg3ðs0Þds0

þ
Z 1

�1

H34ðs; s0Þg�3ðs0Þds0 ¼ q3ðsÞ ¼
b22r0

S2
þ ig

wyð�2aÞ
R2

ð29cÞ
in which g1, g2, and g3 with its complex conjugate g�3 are the unknown functions and wyð�2aÞ is an un-

known constant. The definition of the parameters Pi and the kernels Hij are given in Appendix A. In the case

of an internal crack, the constraint conditions of Eqs. (6) and (8) are rewritten as
Z 1

�1

g1ðr0Þdr0 ¼ 0;

Z 1

�1

g2ðr0Þdr0 ¼ 0; ð30a;bÞ

Z 1

�1

½g3ðs0Þ � g�3ðs0Þ	ds0 ¼ 0;

Z 1

�1

½g3ðs0Þ þ g�3ðs0Þ	ds0 ¼ 0;

Z 1

�1

ðs0 � 1Þ½g3ðs0Þ þ g�3ðs0Þ	ds0 ¼ 0:

ð30c;d;eÞ

In the case of an edge crack, the first two constraint conditions, Eqs. (30a) and (30b), enforcing single-

valuedness are no longer valid. However, they are replaced with the three conditions arising from the

asymptotic analysis, Eq. (27). Invoking the normalization parameters given in Eq. (28), these constraint

conditions are rewritten as
h11ðbÞG1ð�1Þ þ h12ðbÞG2ð�1Þ þ h13ðbÞG3ð1Þ þ h14ðbÞG�
3ð1Þ ¼ 0;

h21ðbÞG1ð�1Þ þ h22ðbÞG2ð�1Þ þ h23ðbÞG3ð1Þ þ h24ðbÞG�
3ð1Þ ¼ 0;

h31ðbÞG1ð�1Þ þ h32ðbÞG2ð�1Þ þ h33ðbÞG3ð1Þ þ h34ðbÞG�
3ð1Þ ¼ 0

ð31Þ
in which hij are expressed in terms of Sij.
The unknown functions, f1, f2, and / whose solution forms are given by Eqs. (12) and (13) are rewritten

in terms of the normalized variables as
Kn
2
f1ðxÞ � g1ðrÞ ¼

G1ðrÞ
ð1� rÞa1ð1þ rÞb1

; ð32aÞ

Ke
2
f2ðxÞ � g2ðrÞ ¼

G2ðrÞ
ð1� rÞa2ð1þ rÞb2

; ð32bÞ

/ðyÞ � g3ðsÞ ¼
G3ðsÞ

ð1� sÞb3ð1þ sÞa3
ð32cÞ
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for the internal crack and as
Kn
2
f1ðxÞ � g1ðrÞ ¼

G1ðrÞ
ð1� rÞa1ð1þ rÞb

; ð33aÞ

Ke
2
f2ðxÞ � g2ðrÞ ¼

G2ðrÞ
ð1� rÞa2ð1þ rÞb

; ð33bÞ

/ðyÞ � g3ðsÞ ¼
G3ðsÞ

ð1� sÞbð1þ sÞa3
ð33cÞ
for the edge crack. The unknown auxiliary functions, G1ðrÞ, G2ðrÞ, and G3ðsÞ permit the evaluation of the

singular stresses around the crack tips and at the end points of the reinforcement plate. For the internal

crack, the stress intensity factors representing the singularities are defined as (Mahajan et al., 1993)
k1ðdÞ ¼ lim
x!d

2b1ðx� dÞa1ryyðx; 0Þ ¼ lim
x!d

2b1ðd � xÞa1 Kn
2
f1ðxÞ ¼ G1ð1Þ

d � c
2

� �a1

; ð34aÞ

k2ðdÞ ¼ lim
x!d

2b2ðx� dÞa2rxyðx; 0Þ ¼ lim
x!d

2b2ðd � xÞa2 Ke
2
f2ðxÞ ¼ G2ð1Þ

d � c
2

� �a2

; ð34bÞ

k1ðcÞ ¼ lim
x!c

2a1ðc� xÞb1ryyðx; 0Þ ¼ � lim
x!c

2a1ðx� cÞb1 Kn
2
f1ðxÞ ¼ �G1ð�1Þ d � c

2

� �b1

; ð34cÞ

k2ðcÞ ¼ lim
x!c

2a2ðc� xÞb2rxyðx; 0Þ ¼ � lim
x!c

2a2ðx� cÞb2 Ke
2
f2ðxÞ ¼ �G2ð�1Þ d � c

2

� �b2

; ð34dÞ

kð0Þ ¼ gk1ð0Þ þ ik2ð0Þ ¼ lim
y!0

2a3ð�yÞb3 ½grxxð0; yÞ þ irxyð0; yÞ	 ¼ G3ð1Þab3 ; ð34eÞ

kð�2aÞ ¼ gk1ð�2aÞ þ ik2ð�2aÞ ¼ lim
y!�2a

2b3ðy þ 2aÞa3 ½grxxð0; yÞ þ irxyð0; yÞ	 ¼ G3ð�1Þaa3 : ð34fÞ
Similarly, for the edge crack they are defined as
k1ðdÞ ¼ lim
x!d

2bðx� dÞa1ryyðx; 0Þ ¼ lim
x!d

2bðd � xÞa1 Kn
2
f1ðxÞ ¼ G1ð1Þ

d � c
2

� �a1

; ð35aÞ

k2ðdÞ ¼ lim
x!d

2bðx� dÞa2rxyðx; 0Þ ¼ lim
x!d

2bðd � xÞa2 Ke
2
f2ðxÞ ¼ G2ð1Þ

d � c
2

� �a2

; ð35bÞ

kð0Þ ¼ gk1ð0Þ þ ik2ð0Þ ¼ lim
y!0

2a3ð�yÞb½grxxð0; yÞ þ irxyð0; yÞ	 ¼ G3ð1Þab; ð35cÞ

kð�2aÞ ¼ gk1ð�2aÞ þ ik2ð�2aÞ ¼ lim
y!�2a

2bðy þ 2aÞa3 ½grxxð0; yÞ þ irxyð0; yÞ	 ¼ G3ð�1Þaa3 : ð35dÞ
By computing the crack closure energy, in the orthotropic region under consideration, the strain energy

release at a given crack tip may be obtained as
G ¼ p
2

k21
Kn

�
þ k22
Ke

�
: ð36Þ
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The complexity of the kernels in Eqs. (9a), (9b), and (10) requires that the singular integral equation be

solved numerically. The procedure involves the reduction of the integral equations and constraints to a

system of algebraic equations using the collocation technique introduced by Miller and Keer (1985) and

later extended by Quan (1991) to include the generalized Cauchy kernel, and by Kabir et al. (1998) to
consider integral equations with logarithmic-, Cauchy-, and Hadamard-type singularities. In this technique,

the quadrature interval ½�1; 1	 is partitioned into a series of subintervals over which the unknown functions,

Gi, with i ¼ 1; 2; 3, are approximated by quadratic Lagrange interpolation polynomials. The integration

points, r0i or s0i, are at the ends and at the midpoint of each subinterval obtained by dividing the interval

½�1; 1	 into Ni subintervals associated with each Gi. The collocation points, rj or sj, are defined at the

midpoint of two consecutive integration points, i.e., rj ¼ ðr0j þ r0ðjþ1ÞÞ=2 or sj ¼ ðs0j þ s0ðjþ1ÞÞ=2, with

j ¼ 1; 2; . . . ; 2Ni. Thus, the unknown functions are approximated over each subinterval k ðt2k�1 6 t6 t2kþ1Þ
by
GiðtÞ � Gið2k�1Þ½ðt � t2kÞ2=2h2k � ðt � t2kÞ=2hk	 þ Gið2kÞ½1� ðt � t2kÞ2=h2k 	 þ Gið2kþ1Þ½ðt � t2kÞ2=2h2k
þ ðt � t2kÞ=2hk	; ð37Þ
where GiðkÞ ¼ GiðtkÞ, with i ¼ 1; 2; 3, and hk ¼ ðt2kþ1 � t2k�1Þ=2, with t representing either r0 or s0. As a result

of this discretization, Eqs. (29), (30), and (31) can be written as
P1
p

X2N1þ1

i¼1

w1iðrjÞG1ðiÞ þ
X2N1þ1

i¼1

H11ðrj; r0iÞv1iG1ðiÞ þ
X2N2þ1

i¼1

H12ðrj; r0iÞv2iG2ðiÞ þ
X2N3þ1

i¼1

H13ðrj; s0iÞv3iG3ðiÞ

þ
X2N3þ1

i¼1

H14ðrj; s0iÞv�3iG�
3ðiÞ ¼ q1ðrjÞ; j ¼ 1; . . . ; 2N1; ð38aÞ

P2
p

X2N2þ1

i¼1

w2iðrjÞG2ðiÞ þ
X2N1þ1

i¼1

H21ðrj; r0iÞv1iG1ðiÞ þ
X2N2þ1

i¼1

H22ðrj; r0iÞv2iG2ðiÞ þ
X2N3þ1

i¼1

H23ðrj; s0iÞv3iG3ðiÞ

þ
X2N3þ1

i¼1

H24ðrj; s0iÞv�3iG�
3ðiÞ ¼ q2ðrjÞ; j ¼ 1; . . . ; 2N2; ð38bÞ

R3

ð1� sjÞb3ð1þ sjÞa3
X3
m¼1

BmG3ðIþmÞ þ
P3
p

X2N3þ1

i¼1

w3iðsjÞG3ðiÞ þ
X2N1þ1

i¼1

H31ðsj; r0iÞv1iG1ðiÞ þ
X2N2þ1

i¼1

H32ðsj; r0iÞv2iG2ðiÞ

þ
X2N3þ1

i¼1

H33ðsj; s0iÞv3iG3ðiÞ þ
X2N3þ1

i¼1

H34ðsj; s0iÞv�3iG�
3ðiÞ ¼ q3ðsjÞ; j ¼ 1; . . . ; 2N3 ð38cÞ
subject to, in the case of an internal crack,
X2N1þ1

i¼1

v1iG1ðiÞ ¼ 0; ð39aÞ

X2N2þ1

i¼1

v2iG2ðiÞ ¼ 0 ð39bÞ
or, in the case of an edge crack,
h11ðbÞG1ð1Þ þ h12ðbÞG2ð1Þ þ h13ðbÞG3ð2N3þ1Þ þ h14ðbÞG�
3ð2N3þ1Þ ¼ 0; ð40aÞ



Table

Stiffne

Mat

1

2

3

4

5
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h21ðbÞG1ð1Þ þ h22ðbÞG2ð1Þ þ h23ðbÞG3ð2N3þ1Þ þ h24ðbÞG�
3ð2N3þ1Þ ¼ 0; ð40bÞ

h31ðbÞG1ð1Þ þ h32ðbÞG2ð1Þ þ h33ðbÞG3ð2N3þ1Þ þ h34ðbÞG�
3ð2N3þ1Þ ¼ 0 ð40cÞ
and
X2N3þ1

i¼1

v3iG3ðiÞ � v�3iG�
3ðiÞ ¼ 0; ð41aÞ

X2N3þ1

i¼1

v3iG3ðiÞ þ v�3iG�
3ðiÞ ¼ 0; ð41bÞ

X2N3þ1

i¼1

½s0i � 1	½v3iG3ðiÞ þ v�3iG�
3ðiÞ	 ¼ 0 ð41cÞ
in which I ¼ j� 1 or j� 2 for odd and even values of j, respectively, and Ni indicates the number of in-

tegration intervals. The typographical error-free form of the singular weight functions, wiðrjÞ, wiðsjÞ, and vi,
and the Lagrange coefficients, Bm, are given by Kabir et al. (1998). Finally, the discrete form of the singular

integral equations, Eq. (38), and constraint equations, Eqs. (39)–(41), can be cast into the form
AjiGi ¼ qj; i ¼ 1; 2; . . . ;N ; j ¼ 1; 2; . . . ;M : ð42Þ

In the case of an internal crack, the number of unknowns, Gi is equal to the number of equations, i.e,

N ¼ M ¼ 1þ R3
k¼12Nk þ 1, leading to a unique solution. However, in the case of an edge crack, the number

of unknowns, Gi, is one less than the number of equations, i.e, M ¼ N þ 1, leading to an over-determined

system of equations. Therefore, the system of equations is solved in the sense of least-squares minimization.
5. Numerical results

In the solution of the integral equations concerning both the internal and edge crack configurations, the

number of subintervals associated with each unknown function is chosen as 200 in order to ensure their

convergence. The parameter Ch, the measure of material orthotropy, is useful in characterizing the an-
isotropy of orthotropic materials and also crystals with other symmetries. However, it is very difficult to

give a simple physical interpretation for Ch. Results are given for five different substrate materials. The

properties of these materials and the corresponding values of Ch are shown in Table 1. Since Ch ¼ 0 cor-

responds to an isotropic material, Material 3 may be considered as ‘‘almost’’ isotropic. The material of the

cover plate is assumed to be isotropic with shear modulus G ¼ 5:9931� 109 Pa and Poisson�s ratio m ¼ 0:3.
These material properties for the substrate and the cover plate are the same as those given by Mahajan

(1991).
1

ss properties for substrate materials

erial C11 � 1011 Pa C12 � 1010 Pa C22 � 1011 Pa C66 � 1010 Pa Ch

1.0100 2.7430 0.3592 0.4905 6.8222

0.5966 0.6764 0.1712 0.5592 3.0358

0.2088 0.9012 0.2101 0.5971 )0.0022
1.6800 6.6000 1.6800 8.4000 )1.0944
1.1904 5.3840 1.1904 5.9520 )1.3137
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The validity of the present analysis is examined by considering Material 3 for the substrate. For this case,

the material properties of the plate and the substrate are close to each other. As shown in Fig. 2, the

normalized stress intensity factors associated with the internal crack tips approach unity as the crack of

fixed length specified by ‘0 ¼ ðd � cÞ=2a ¼ 1 moves away from the boundary, recovering the solution for an
infinite isotropic plate with an internal crack. Also, for c! 0, the normalized stress intensity factor of

k1ðdÞ=ð2br0

ffiffiffiffiffiffiffiffi
d=2

p
Þ ¼ 1:121 is recovered for an edge crack in an isotropic half-space. Material 1, with the

highest degree of material orthotropy, is considered in order to capture the effect of material orthotropy on

the stress intensity factors.

Internal crack: For the case of an internal crack, the normalized stress intensity factors at the crack tips

and at the corners of the plate are given in Tables 2 and 3 for a fixed normalized crack length,

‘0 ¼ ðd � cÞ=2a ¼ 1, and plate thickness-to-length ratios of h=a ¼ 3, 5 and 7 while varying its distance from

the boundary. The parameter s0 ¼ ðd þ cÞ=2a indicates the distance from the boundary to the center of the
crack. The results confirm the expected trend that the stress intensity factors at the crack tips increase with

decreasing cover plate thickness and decreasing crack distance from the substrate boundary. A similar

observation is also valid for the stress intensity factors at the corner of the plate aligned with the crack.

Note that the shearing (mode II) stress intensity factors are small in comparison with the opening (mode I)

values. This leads to the conclusion that sub-critical crack growth will be predominantly under mode I

conditions. In Tables 4 and 5, the crack distance from the boundary, s0 ¼ ðd þ cÞ=2a ¼ 1, is fixed and the

normalized crack length denoted by the parameter l0 ¼ ðd � cÞ=2a is varied for plate thickness-to-length

ratios of h=a ¼ 3, 5 and 7. As expected, the stress intensity factors at the crack tips increase with increasing
crack length.
Fig. 2. Normalized stress intensity factors for an internal crack in an ‘‘almost’’ isotropic substrate (Material 3) for varying crack depth

from the boundary.



Table 2

Normalized stress intensity factors at the internal crack tips for varying crack distance from boundary and for various plate thicknesses

(Material 1, ‘0 ¼ ðd � cÞ=2a ¼ 1)

s0 ¼
d þ c
2a

k1ðcÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � cÞ=2

p k1ðdÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � cÞ=2

p k2ðcÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � cÞ=2

p k2ðdÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � cÞ=2

p
a=h ¼ 3

1.01 3.010 1.208 0.292 )0.066
1.05 1.814 1.154 0.056 )0.049
1.10 1.503 1.126 0.015 )0.040
1.50 1.109 1.055 )0.016 )0.018
2.00 1.047 1.031 )0.014 )0.011
3.00 1.018 1.014 )0.009 )0.006
5.00 1.007 1.006 )0.004 )0.003

a=h ¼ 5

1.01 3.016 1.218 0.191 )0.058
1.05 1.832 1.164 0.023 )0.040
1.10 1.522 1.134 )0.001 )0.031
1.50 1.119 1.059 )0.013 )0.012
2.00 1.051 1.033 )0.010 )0.008
3.00 1.020 1.015 )0.006 )0.004
5.00 1.007 1.006 )0.003 )0.002

a=h ¼ 7

1.01 3.022 1.225 0.129 )0.051
1.05 1.844 1.171 0.004 )0.034
1.10 1.535 1.140 )0.008 )0.025
1.50 1.126 1.061 )0.010 )0.009
2.00 1.054 1.034 )0.008 )0.006
3.00 1.021 1.015 )0.005 )0.003
5.00 1.007 1.006 )0.002 )0.001
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Edge crack: In the presence of an edge crack, the strength of the singularity, b (Eq. (14c)) is obtained
from the asymptotic analysis for the junction of a plate corner and edge crack surface in the substrate. The

parameter, b is not dependent on the plate material properties but the half-space material properties. Its

variation which does not appear to have a functional relationship is presented in Table 6 for materials 1–5

with varying degree of orthotropy controlled by the dimensionless anisotropy parameter, Ch. The nor-

malized stress intensity factors at the tip of an edge crack and at the corners of the plate for varying

normalized crack length d=a and plate thickness-to-length ratios of h=a ¼ 3, 5 and 7 are presented in Tables

7 and 8, respectively. The stress intensity factors at the crack tip for both modes I and II increase as the

crack tip approaches the boundary. As shown in Fig. 3, the stress intensity factors for all three plate
thicknesses reach the limiting value of 1.297 for the opening mode as the crack length becomes larger than

the length of the plate. As presented in Table 7, the stress intensity factors for the shearing mode decrease

for increasing crack length. The normalized stress intensity factors at the junction of the plate and crack

surface are small in comparison with the values at the other edge of the plate. As the crack tip approaches

the boundary, the stress intensity factors of both modes associated with the corners of the plate increase.

The comparison of the results in Table 7(materials 1 and 3), reveals the effect of material orthotropy on the

stress intensity factors for an edge crack. The results in these tables also capture the effect of reinforcement

on the stress intensity factors. As expected, the effect of the reinforcement on the stress intensity factors
diminishes as the crack tip moves away from the boundary. In Table 7, as the crack tip moves away from

the boundary, the normalization of the limiting value of ðk1ðdÞ=ðr0

ffiffiffiffiffiffiffiffi
d=2

p
Þ ¼ 1:370Þ=2b with b ¼ 0:28937205

yields the well-known result of 1.121 for an edge crack in an isotropic half-space.



Table 3

Normalized stress intensity factors at the plate corners in the presence of an internal crack for varying crack distance from boundary

and for various plate thicknesses (Material 1, ‘0 ¼ ðd � cÞ=2a ¼ 1)

s0 ¼
d þ c
2a

gk1ð�2aÞ þ ik2ð�2aÞ
r0aa3

gk1ð0Þ þ ik2ð0Þ
r0ab3

a=h ¼ 3

1.05 0:180� 0:093i 0:831þ 0:390i

1.10 0:197� 0:101i 0:570þ 0:270i

1.50 0:231� 0:123i 0:241þ 0:140i

2.00 0:220� 0:123i 0:190þ 0:117i

3.00 0:197� 0:114i 0:173þ 0:106i

5.00 0:180� 0:106i 0:169þ 0:102i

a=h ¼ 5

1.05 0:137� 0:069i 0:699þ 0:311i

1.10 0:151� 0:076i 0:459þ 0:213i

1.50 0:186� 0:094i 0:185þ 0:107i

2.00 0:182� 0:095i 0:153þ 0:090i

3.00 0:166� 0:088i 0:145þ 0:081i

5.00 0:153� 0:082i 0:144þ 0:079i

a=h ¼ 7

1.05 0:114� 0:056i 0:605þ 0:266i

1.10 0:126� 0:062i 0:382þ 0:180i

1.50 0:159� 0:078i 0:151þ 0:089i

2.00 0:158� 0:079i 0:130þ 0:074i

3.00 0:145� 0:073i 0:126þ 0:067i

5.00 0:134� 0:068i 0:126þ 0:065i

Table 4

Normalized stress intensity factors at the internal crack tips for varying crack length and plate thickness (Material 1,

s0 ¼ ðd þ cÞ=2a ¼ 1)

l0 ¼
d � c
2a

k1ðcÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � cÞ=2

p k1ðdÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � cÞ=2

p k2ðcÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � cÞ=2

p k2ðdÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � cÞ=2

p
a=h ¼ 3

0.10 0.980 0.983 )0.010 )0.011
0.25 0.987 0.991 )0.010 )0.012
0.50 1.028 1.017 )0.010 )0.015
0.75 1.164 1.064 )0.005 )0.024
0.90 1.464 1.118 0.018 )0.039

a=h ¼ 5

0.10 0.986 0.987 )0.008 )0.008
0.25 0.994 0.996 )0.008 )0.009
0.50 1.037 1.022 )0.009 )0.011
0.75 1.178 1.072 )0.008 )0.018
0.90 1.481 1.127 0.002 )0.031

a=h ¼ 7

0.10 0.989 0.990 )0.006 )0.007
0.25 0.998 0.999 )0.007 )0.007
0.50 1.043 1.026 )0.007 )0.009
0.75 1.188 1.076 )0.009 )0.015
0.90 1.493 1.133 )0.006 )0.025
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Table 5

Normalized stress intensity factors at the plate corners in the presence of an internal crack for varying crack length and plate thickness

(Material 1, s0 ¼ ðd þ cÞ=2a ¼ 1)

l0 ¼
d � c
2a

gk1ð�2aÞ þ ik2ð�2aÞ
r0aa3

gk1ð0Þ þ ik2ð0Þ
r0ab3

a=h ¼ 3

0.10 0:171� 0:101i 0:171þ 0:101i

0.25 0:175� 0:102i 0:177þ 0:104i

0.50 0:186� 0:105i 0:206þ 0:117i

0.75 0:195� 0:104i 0:304þ 0:157i

0.90 0:186� 0:097i 0:538þ 0:253i

a=h ¼ 5

0.10 0:145� 0:078i 0:145þ 0:078i

0.25 0:147� 0:079i 0:149þ 0:080i

0.50 0:154� 0:081i 0:166þ 0:091i

0.75 0:156� 0:080i 0:237þ 0:123i

0.90 0:145� 0:073i 0:435þ 0:200i

a=h ¼ 7

0.10 0:127� 0:065i 0:127þ 0:065i

0.25 0:129� 0:065i 0:129þ 0:067i

0.50 0:133� 0:067i 0:140þ 0:075i

0.75 0:132� 0:065i 0:192þ 0:103i

0.90 0:121� 0:060i 0:363þ 0:169i

Table 6

Strength of singularity for the junction of the plate corner and an edge crack surface of the substrate for Materials 1–5

Material b

1 0.28309954

2 0.20241910

3 0.28937205

4 0.27884158

5 0.29999538

Table 7

Normalized stress intensity factors at the tip of an edge crack for varying crack length and plate thickness (Materials 1 and 3)

d=a k1ðdÞ
r0

ffiffiffiffiffiffiffiffi
d=2

p k2ðdÞ
r0

ffiffiffiffiffiffiffiffi
d=2

p
a=h ¼ 3 a=h ¼ 5 a=h ¼ 7 a=h ¼ 3 a=h ¼ 5 a=h ¼ 7

Material 1

0.10 1.553 1.499 1.460 0.102 0.074 0.057

0.20 1.407 1.384 1.367 0.047 0.034 0.026

0.50 1.315 1.312 1.309 0.008 0.007 0.006

1.00 1.298 1.298 1.298 )0.002 0.000 0.000

1.50 1.297 1.297 1.297 )0.003 )0.001 )0.001

Material 3

0.10 1.773 1.700 1.643 0.164 0.128 0.102

0.20 1.553 1.521 1.495 0.082 0.065 0.052

0.50 1.405 1.401 1.396 0.018 0.016 0.014

1.00 1.373 1.373 1.373 )0.001 0.000 0.001

1.50 1.370 1.370 1.370 )0.002 )0.001 )0.001
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Table 8

Normalized stress intensity factors at the plate corners for varying edge crack length and plate thickness (Material 1)

d=a gk1ð�2aÞ þ ik2ð�2aÞ
r0aa3

gk1ð0Þ þ ik2ð0Þ
r0ab

a=h ¼ 3

0.10 0:137� 0:089i 0:082� 0:023i

0.20 0:127� 0:085i 0:054� 0:015i

0.50 0:091� 0:068i 0:018� 0:005i

1.00 0:040� 0:040i �0:502þ 0:014i

1.50 0:009� 0:021i �0:160þ 0:045i

a=h ¼ 5

0.10 0:118� 0:070i 0:082� 0:023i

0.20 0:112� 0:067i 0:049� 0:014i

0.50 0:086� 0:054i 0:005� 0:002i

1.00 0:044� 0:032i �0:073þ 0:020i

1.50 0:017� 0:017i �0:208þ 0:058i

a=h ¼ 7

0.10 0:104� 0:059i 0:080� 0:022i

0.20 0:100� 0:056i 0:042� 0:012i

0.50 0:078� 0:046i �0:004þ 0:001i

1.00 0:043� 0:028i �0:089þ 0:025i

1.50 0:019� 0:015i �0:247þ 0:068i

Fig. 3. Normalized stress intensity factors for an edge crack in an orthotropic substrate (Material 1) for varying crack length for a

range of plate thickness-to-length ratios.
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6. Conclusions

By solving the coupled singular integral equations with either a simple Cauchy kernel or with a gene-

ralized Cauchy kernel, this study investigated the effect of a reinforcement plate on the stress intensity
factors of either an internal crack or an edge crack in an orthotropic substrate under uniform loading. The

analysis revealed that the stress intensity factors at the internal crack tips increase with decreasing cover

plate thickness and that they also increase with decreasing crack distance from the substrate boundary.

Also, the normalized stress intensity factors at the crack tips increase with increasing crack length. The

stress intensity factors at the tip of an edge crack and at the corners of the plate for both modes I and II

increase as the crack tip approaches the boundary. The stress intensity factors of both modes associated

with the corners of the plate also increase as the crack tip approaches the boundary. This study permits the

investigation of the influence of material orthotropy on the stress intensification or the energy release rate to
predict cracking and its direction.
Appendix A

The Green�s functions, Kij and Mij, in Eqs. (1) and (2) due to a pair of dislocations at point ðx1; y1Þ
and concentrated forces at ð0; y0Þ in the half-plane were derived by Pande and Chou (1971) and Wu and

Chou (1982), respectively, as
K11ðx; y; x1; y1Þ ¼
Knk

2

2p
x� x1

v1

½ðx
	

� x1Þ2 � k2ðy � y1Þ2	 �
xþ x1

v2

½ðxþ x1Þ2 � k2ðy � y1Þ2	



þ Knk
2

pCh

xþ x1
v2

½2f
	

þ Chðxþ x1Þ2	


� 1

v3

½2ðxþ x1Þf þ ChfChx1x2 þ xðxþ x1Þðxþ 3x1Þ

þ x1k2ðy � y1Þ2g	;

K12ðx; y; x1; y1Þ ¼ �Kek
2

2p
y � y1

v1

½ðCh
	

þ 3Þðx� x1Þ2 þ k2ðy � y1Þ2	 �
y � y1

v2

½ðCh þ 3Þðxþ x1Þ2

þ k2ðy � y1Þ2	


þ Kek

2

pCh

y � y1
v2

½2f
	

þ Chðxþ x1Þ2	 �
y � y1

v3

½2f þ Chðx2 þ x21Þ	


;

K21ðx; y; x1; y1Þ ¼
Knk

2

2p
y � y1

v1

½ðx
	

� x1Þ2 � k2ðy � y1Þ2	 �
y � y1

v2

½ðxþ x1Þ2 � k2ðy � y1Þ2	



þ Knk
2

pCh

y � y1
v2

½2f
	

þ Chðxþ x1Þ2	 �
y � y1

v3

½2f þ Chðx2 þ x21Þ	


;

K22ðx; y; x1; y1Þ ¼
Ke
2p

x� x1
v1

½ðx
	

� x1Þ2 � k2ðy � y1Þ2	 �
xþ x1

v2

½ðxþ x1Þ2 � k2ðy � y1Þ2	



� Ke
pCh

xþ x1
v2

½2f
	

þ Chk2ðy � y1Þ2	 �
1

v3

½2ðxþ x1Þf þ ChfChxx21 þ x1ðxþ x1Þð3xþ x1Þ

þ xk2ðy � y Þ2g	


;
1
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K31ðx; y; x1; y1Þ ¼
Kn
2p

x� x1
v1

½ðx
	

� x1Þ2 þ ðCh þ 3Þk2ðy � y1Þ2	 �
xþ x1

v2

½ðxþ x1Þ2

þ ðCh þ 3Þk2ðy � y1Þ2	


� Kn

pCh

xþ x1
v2

½2f
	

þ Chk2ðy � y1Þ2	 �
1

v3

½2ðxþ x1Þf

þ ChfChxx21 þ x1ðxþ x1Þð3xþ x1Þ þ xk2ðy � y1Þ2g	


;

K32ðx; y; x1; y1Þ ¼
Ke
2p

y � y1
v1

½ðx
	

� x1Þ2 � k2ðy � y1Þ2	 �
y � y1

v2

½ðxþ x1Þ2 � k2ðy � y1Þ2	



� Ke
pCh

y � y1
v2

½2f
	

þ Chk2ðy � y1Þ2	 �
y � y1

v3

½2f þ ChfðCh þ 4Þx21 þ 2x1x

þ k2ðy � y1Þ2g	


;

K13ðx; y; y0Þ ¼ � k3x2ðy � y0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p

pfx4 þ k2ðCh þ 2Þx2ðy � y0Þ2 þ k4ðy � y0Þ4g
;

K14ðx; y; y0Þ ¼ � kx3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p

pfx4 þ k2ðCh þ 2Þx2ðy � y0Þ2 þ k4ðy � y0Þ4g
;

K23ðx; y; y0Þ ¼ � k3xðy � y0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p

pfx4 þ k2ðCh þ 2Þx2ðy � y0Þ2 þ k4ðy � y0Þ4g
;

K24ðx; y; y0Þ ¼ � kx2ðy � y0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p

pfx4 þ k2ðCh þ 2Þx2ðy � y0Þ2 þ k4ðy � y0Þ4g
;

K33ðx; y; y0Þ ¼ � k3ðy � y0Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p

pfx4 þ k2ðCh þ 2Þx2ðy � y0Þ2 þ k4ðy � y0Þ4g
;

K34ðx; y; y0Þ ¼ � kxðy � y0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p

pfx4 þ k2ðCh þ 2Þx2ðy � y0Þ2 þ k4ðy � y0Þ4g
;

M11ð0; y; x1; y1Þ ¼
kx21ðy � y1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p

pf½x21 þ k2ðy � y1Þ2	2 þ Chx21k
2ðy � y1Þ2g

;

M12ð0; y; x1; y1Þ ¼ � kx31
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p

pf½x21 þ k2ðy � y1Þ2	2 þ Chx21k
2ðy � y1Þ2g

;

M21ð0; y; x1; y1Þ ¼ � k3x1ðy � y1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p

pf½x21 þ k2ðy � y1Þ2	2 þ Chx21k
2ðy � y1Þ2g

;

M22ð0; y; x1; y1Þ ¼
k3x21ðy � y1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 4

p
;

pf½x21 þ k2ðy � y1Þ2	2 þ Chx21k
2ðy � y1Þ2g
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M13ðy; y0Þ ¼ �R1dðy � y0Þ;

M14ðy; y0Þ ¼ �R2

1

pðy � y0Þ
;

M23ðy; y0Þ ¼ �S2
1

pðy � y0Þ
;

M24ðy; y0Þ ¼ S1dðy � y0Þ;
where
Ke ¼ ðC12 þ C12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C66ðC12 � C12Þ

C22ðC12 þ C12 þ 2C66Þ

s
; with C12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22

p
;

Kn ¼
Ke
k2

; with k ¼ C11

C12

� �1=4

;

f ¼ ðxþ x1Þ2 þ k2ðy � y1Þ2;

v1 ¼ fðx� x1Þ2 þ k2ðy � y1Þ2g2 þ Chðx� x1Þ2k2ðy � y1Þ2;

v2 ¼ f2 þ Chðxþ x1Þ2k2ðy � y1Þ2;

v3 ¼ ðf þ Chx1xÞ2 þ Chðx� x1Þ2k2ðy � y1Þ2;

Ch ¼
ðC12 þ C12ÞðC12 � C12 � 2C66Þ

C12C66

;

S1 ¼
Q2

P1Q2 þ P2Q1

; S2 ¼
Q1

P1Q2 þ P2Q1

;

R1 ¼ � P1
P1Q2 þ P2Q1

; R2 ¼
P2

P1Q2 þ P2Q1

;

P1 ¼ C12 þ
s2 � s1
d2 � d1

C11; P2 ¼
s2d2 � s1d1
d2 � d1

C66;

Q1 ¼
s1d2 � s2d1
d2 � d1

C11; Q2 ¼ C66 1

	
þ d1d2ðs2 � s1Þ

d2 � d1



;

d1 ¼
1� b1s

2
1

b3s1
; d2 ¼

1� b1s
2
2

b3s2
;

C11 C22 C12 b2
3 � b1b2 � 1 b2
b1 ¼ C66

; b2 ¼ C66

; b3 ¼ 1þ
C66

; b4 ¼ b1

; b5 ¼ b1

:
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The parameters s1 and s2 (Reðs1; s2Þ > 0) are the roots of the characteristic equation
s4 þ b4s
2 þ b5 ¼ 0:
Regardless of the nature of the roots s1 and s2, the constants P1, P2, Q1, and Q2 are always real. Also, it can

be shown that R1 ¼ S1 for all orthotropic materials.

The kernels of the singular integral equations given by Eqs. (9a), (9b), and (10) are defined as
N11ðx; tÞ ¼
2

pCh

Ch þ 4

2ðxþ tÞ

	
� 2xþ tðCh þ 2Þ
x2 þ ðCh þ 2Þxt þ t2



;

N12ðx; tÞ ¼ 0;

N13ðx; y0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 42

p
k3y30

pKnfx4 þ k2ðCh þ 2Þx2y20 þ k4y40g
;

N14ðx; y0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 42

p
kxy20

pKnfx4 þ k2ðCh þ 2Þx2y20 þ k4y40g
;

N21ðx; tÞ ¼ 0;

N22ðx; tÞ ¼
2

pCh

Chþ 4

2ðxþ tÞ

	
� 2xþ tðCh þ 2Þ
x2 þ ðCh þ 2Þxt þ t2



;

N23ðx; y0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 42

p
k3xy20

pKefx4 þ k2ðCh þ 2Þx2y20 þ k4y40g
;

N24ðx; y0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch þ 42

p
ky0x2

pKefx4 þ k2ðCh þ 2Þx2y20 þ k4y40g
;

N31ðy; tÞ ¼
b22KnðCh þ 4Þtk2y2

pS2fðt2 þ k2y2Þ2 þ Chk2y2t2g
;

N32ðy; tÞ ¼ � b22KeðCh þ 4Þt2y
pS2fðt2 þ k2y2Þ2 þ Chk2y2t2g

;

N33ðy; y0Þ ¼ � 1

S2
C
	

þ Dh
2

4



Hðy � y0Þ;

N34ðy; y0Þ ¼ � Dh
2S2

ðy � y0ÞHðy � y0Þ;

N41ðy; tÞ ¼ � b22KnðCh þ 4Þt2y
pR2fðt2 þ k2y2Þ2 þ Chk2y2t2g

;

N42ðy; tÞ ¼
b22KeðCh þ 4Þt3

2 2 2 2 2 2 2 2
;

pk R2fðt þ k y Þ þ Chk y t g
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N43ðy; y0Þ ¼
Dh
2R2

ðy � y0ÞHðy � y0Þ;

N44ðy; y0Þ ¼ � B
R2

Hðy � y0Þ þ
D
2R2

ðy � y0Þ2Hðy � y0Þ:
The kernels Mj in Eq. (10) are defined in terms of Nij as
M1ðy; tÞ ¼ N31ðy; tÞ � igN41ðy; tÞ;

M2ðy; tÞ ¼ N32ðy; tÞ � igN42ðy; tÞ;

M3ðy; y0Þ ¼
1

2

�
� iN33ðy; y0Þ � gN43ðy; y0Þ þ

N34ðy; y0Þ
g

� iN44ðy; y0Þ
�
;

M4ðy; y0Þ ¼
1

2
iN33ðy; y0Þ
�

þ gN43ðy; y0Þ þ
N34ðy; y0Þ

g
� iN44ðy; y0Þ

�
:

The parameters and the kernels in Eq. (30) are defined as
P1 ¼
2

Kn
; P2 ¼

2

Ke
; P3 ¼ �i; R3 ¼ �c;

H11ðr; r0Þ ¼
d � c
Kn

N11ðx; tÞ; H12ðr; r0Þ ¼
d � c
Ke

N12ðx; tÞ;

H13ðr; s0Þ ¼
a
2

	
� iN13ðx; y0Þ þ

1

g
N14ðx; y0Þ



; H14ðr; s0Þ ¼

a
2
iN13ðx; y0Þ
	

þ 1

g
N14ðx; y0Þ



;

H21ðr; r0Þ ¼
d � c
Kn

N21ðx; tÞ; H22ðr; r0Þ ¼
d � c
Ke

N22ðx; tÞ;

H23ðr; s0Þ ¼
a
2

	
� iN23ðx; y0Þ þ

1

g
N24ðx; y0Þ



; H24ðr; s0Þ ¼

a
2

iN23ðx; y0Þ
	

þ 1

g
N24ðx; y0Þ



;

H31ðs; r0Þ ¼
d � c
Kn

M1ðy; tÞ; H32ðs; r0Þ ¼
d � c
Ke

M2ðy; tÞ;

H33ðs; s0Þ ¼ aM3ðy; y0Þ; H34ðs; s0Þ ¼ aM4ðy; y0Þ:
Appendix B

From the equilibrium of a section of the plate subjected to surface tractions (shear and normal stresses

along the interface between the plate and substrate) as shown in Fig. 4, the resultant membrane force, Nyy ,
transverse shear force, Qyy , and resultant moment, Myy , are expressed in the form
NyyðyÞ ¼ �
Z y

�2a
f3ðy0Þdy0;

QyyðyÞ ¼
Z y

f4ðy0Þdy0;

�2a



Fig. 4. Free-body diagram of the plate segment bonded to the substrate.
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MyyðyÞ ¼
h
2

Z y

�2a
f3ðy0Þdy0 þ

Z y

�2a
ðy � y0Þf4ðy0Þdy0:
In the plate, the displacement component in the thickness direction is represented by U ¼ U0ðyÞ and, in

the horizontal direction by V ¼ V0ðyÞ � xwyðyÞ, in which wyðyÞ denotes the rotation of the plate about
the z-axis. The mid-plane displacement components are denoted by U0 and V0 in x and y directions,

respectively. Based on these displacement representations, the strain components of interest may be

expressed as
eyyðx; yÞ ¼
d

dy
V0ðyÞ � x

d

dy
wyðyÞ;

cxyðyÞ ¼
d

dy
U0ðyÞ � wyðyÞ:
Utilizing these kinematic relations in conjunction with Hooke�s law under plane strain conditions while

including the shear correction factor of 5/6 leads to
d

dy
V

h
2
; y

� �
¼ CNyyðyÞ �

h
2

d

dy
wyðyÞ;

d

dy
wyðyÞ ¼ DMyyðyÞ;

d

dy
U0ðyÞ ¼ wyðyÞ � BQyyðyÞ
in which the constants B, C, and D are defined in terms of engineering material constants as B ¼ 6=hGxy ,
C ¼ ð1� vyzvzyÞ=hEyy , and D ¼ 12ð1� vyzvzyÞ=h3Eyy .

Substitution of the resultant forces, Nyy and Qyy , and moment, Myy , in terms of the shear and normal

stresses, f3ðyÞ and f4ðyÞ, gives the displacement gradients along the interface between the plate and substrate

as follows
o

oy
UðyÞ ¼ wyð�2aÞ þ Dh

2

Z y

�2a
ðy � y0Þf3ðy0Þdy0 þ

D
2

Z y

�2a
ðy � y0Þ2f4ðy0Þdy0 � B

Z y

�2a
f4ðy0Þdy0;
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o

oy
V ðh=2; yÞ ¼ � C

�
þ Dh

2

4

�Z y

�2a
f3ðy0Þdy0 �

Dh
2

Z y

�2a
ðy � y0Þf4ðy0Þdy0
in which wyð�2aÞ is an unknown constant representing the rotation at x ¼ �2a.

Appendix C

As given by Muskhelishvili (1953), a sectionally holomorphic function defined by
F ðziÞ ¼
1

p

Z d

c

f ðtÞ
t � zi

dt; i ¼ 1; 2;
with
f ðtÞ ¼ GðtÞ
ðd � tÞaðt � cÞb

; 0 < Reða; bÞ < 1; c < t < d; GðcÞ 6¼ 0; GðdÞ 6¼ 0
has the following asymptotic expression near the end points c and d:
1

p

Z d

c

f ðtÞ
t � z1

dt ¼ GðcÞ
ðd � cÞa

eipb

sin pb
1

ðz1 � cÞb
þ hðz1Þ;

1

p

Z d

c

f ðtÞ
t � z2

dt ¼ � GðdÞ
ðd � cÞb

1

sin pa
1

ðz2 � dÞa
þ sðz2Þ:
As sketched in Fig. 5, outside the cut defined by ½c; d	, the complex variables, zi, are expressed as
z1 ¼ cþ r1ðx� cÞeih1 ; 0 < h1 < 2p;

z2 ¼ d þ r2ðd � xÞeih2 ; �p < h2 < p:
After substituting for z1 and z2, and separating the principal parts, the asymptotic expressions become
1

p

Z d

c

f ðtÞ
t � z1

dt ¼ GðcÞ
ðd � cÞa

eiðp�h1Þb

sin pb
1

rb1ðx� cÞ
b þ hðxÞ;

1

p

Z d

c

f ðtÞ
t � z2

dt ¼ � GðdÞ
ðd � cÞb

e�ih2a

sin pa
1

rb2ðd � xÞ
a þ sðxÞ;
Fig. 5. Description of the points z1 and z2 in relation to the ends of cut.
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where hðxÞ and sðxÞ are either bounded or have singularities that are a lower order than a and b. These
asymptotic expressions are suitable for the behavior of singular integral equations with the generalized

Cauchy kernels. Also derived by Muskhelishvili (1953), for the dominant part of the first singular integral

equation, the asymptotic expression near the end points is expressed as
1

p

Z d

c

f ðtÞ
t � x dt ¼

GðcÞ
ðd � cÞa

cot pb

ðx� cÞb
� GðdÞ
ðd � cÞb

cot pa
ðd � xÞa þ G0ðzÞ; c < x < d
in which F0ðzÞ and G0ðzÞ are either bounded or may have singularities that are a lower order than a and b.
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