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Abstract

A solution method is derived to determine the stress intensity factors for both an internal crack and an edge crack in
an orthotropic substrate that is reinforced on its boundary by a finite-length orthotropic plate. The method utilizes the
Green’s functions for a pair of dislocations and a concentrated force on the boundary while invoking the concept of
superposition. Enforcing the traction-free boundary condition along the crack surfaces and the continuity of dis-
placement gradients along the plate/substrate interface results in a coupled system of singular integral equations. An
asymptotic analysis of the kernels in these equations for the region of the junction point between the plate corner and
the substrate boundary reveals the strength of the singularity in the case of an edge crack. The numerical solution of the
integral equations provides results for the stress intensity factors for both an internal crack and an edge crack per-
pendicular to the substrate boundary and aligned with one of the corners of the plate. The present results have been
validated against previously published stress intensity factors for an internal crack and an edge crack in an isotropic
substrate.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Relatively thin elastic layers bonded to elastic substrates, known as cover plates, reinforcements, coat-
ings, and thin films, have a wide variety of engineering applications ranging from structural mechanics,
thermal shielding and other forms of environmental protections to microelectronics. From the viewpoint of
failure mechanics the questions of primary interest regarding these components are usually the accuracy of
modeling and analysis of the likely failure processes. Thermally or mechanically induced loading failures
that are often encountered in practice are cracking of the substrate at the edges of the reinforcement layer,
de-bonding along the layer/substrate interface, and cracking of the layer.
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Concerning microelectronics, the nature of the plate/substrate residual stresses was investigated by Hu
(1979) and Isomae (1981, 1985), and the representation of these residual stresses in terms of far field stresses
on the substrate was discussed by Erdogan and Joseph (1990). It is essential to investigate the stress field in
order to analyze physical effects such as dislocation generation, film debonding and film and substrate
distortion and cracking. Although the finite element analysis is capable of capturing the singular stress
behavior near a corner or a crack tip in homogeneous regions with a refined mesh of conventional elements,
it fails to capture the appropriate singular behavior near a corner or a crack tip at the junction of dissimilar
materials.

Even without taking into account the possible inelastic and time-temperature effects, the actual three-
dimensional problem of bonded layers of finite lengths for various crack geometries is analytically in-
tractable. Depending on the relative dimensions of the adherents and the degree of accuracy required of the
analysis, generally the problem is modeled under various approximating assumptions. The first set of as-
sumptions, which are made largely for mathematical expediency, concerns the plane strain or axi-symmetry
in loading and geometry and the piecewise homogeneity of the medium. The second set of assumptions
concerns the mechanical behavior of the materials and usually requires that the adherents be linearly elastic,
time-independent and isotropic, orthotropic, or anisotropic. The third group of assumptions involves
certain simplifications regarding the distribution of the displacements or stresses in the non-homogeneous
medium. If, for example, the thicknesses of the adherents are very small compared with the in-plane di-
mensions of the medium, then it may be possible to neglect all bending effects and model the adherents as
“membranes” (Goodier and Hsu, 1954; Muki and Sternberg, 1968). The membrane model does, however,
have a major drawback, in that it neglects the normal component of the load transfer along the interface,
which is known to play an important role in the de-bonding process. Thus, despite relatively small adherent
thicknesses, if the bending stiffness of the components is not negligible, a ““plate’” model may be employed
for the adherents (Goland and Reissner, 1944; Delale et al., 1981). Other previous models treat the cover
plate as a “‘membrane’ and the substrate as an elastic continuum having finite (Erdogan and Civelek, 1974)
or infinite thickness (Erdogan and Gupta, 1971a; Erdogan, 1971; Erdogan and Joseph, 1990) or assume
both adherents to be elastic continua (Erdogan and Gupta, 1971b; Erdogan and Arin, 1972; Hutchinson
and Suo, 1991). The emphasis in most of these studies was on de-bonding. The question of film fracture was
briefly discussed by Erdogan and Joseph (1990). The problem of the substrate cracking at the edge of a
membrane reinforcement was addressed by Delale and Erdogan (1982) for isotropic materials, and later by
Mahajan et al. (1993) for orthotropic materials because Isomae (1981) reported that both the film and
substrate demonstrate significant anisotropy in their elastic properties.

The previous work by Delale and Erdogan (1982) and Mahajan et al. (1993) employed a membrane
model assuming that bending stiffness of the cover plate is negligible. This assumption concerns only the
shear stresses while disregarding the normal stresses. Also, it removes the power singularity at the junction
of plate/substrate junction. Furthermore, Erdogan and Joseph (1990) demonstrated that the stress singu-
larity predicted by the membrane model can have a maximum difference of nearly 20 percent from the
predictions of the more realistic plate model. Unlike the membrane model, the plate model with a bending
stiffness captures the complex singular behavior of the coupled normal and shearing stresses. In the case of
a membrane model, the shear stress has a square root singularity at the film edge. The magnitude of this
stress intensity factor is dependent on a stiffness parameter that is a measure of the relative stiffnesses of the
half-plane and the film. Delale and Erdogan (1982) concluded that the crack tends to propagate approxi-
mately normal to the half-plane surface. This conclusion is not entirely correct and the correct direction was
determined by Erdogan and Joseph (1990) reporting that very near the film edge, the crack in the substrate
tends to curve either towards the film or away from the film depending on the applied load on the film-
substrate combination.

In this paper, the cracking of the substrate is considered by assuming that (i) the substrate is a semi-
infinite orthotropic medium, (ii) the reinforcement is modeled as an orthotropic “plate,” and (iii) the plane
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of orthotropy perpendicular to the boundary is also the plane of weak fracture resistance in the substrate,
and hence the crack starts at the end point of the plate reinforcement and propagates perpendicular to the
boundary.

2. Problem statement

An orthotropic substrate having either an internal or an edge crack is reinforced by an orthotropic plate
as described in Fig. 1. The substrate is semi-infinite in extent, and the plate has a thickness of # and a length
of 2a. The crack aligned with the right edge of the plate is perpendicular to the substrate boundary. In the
case of an internal crack, the depth of the upper and lower crack tips from the boundary are denoted by ¢
and d, leading to a crack length of (d — ¢). In the case of an edge crack, the parameter ¢ becomes zero. The
crack surfaces are traction free and the plate/substrate interface is perfectly bonded.

The substrate is subjected to a uniform stress, gy, at infinity [i.e., o,,(x, £00) = 0] arising from a possible
displacement mismatch along the plate/substrate interface (e.g. temperature changes) as suggested by Er-
dogan and Joseph (1990). The geometry of the medium and the applied loads are such that plane strain
conditions prevail. A Cartesian coordinate system (x,y) is located at the junction of plate edge and
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Fig. 1. Geometry of the orthotropic substrate reinforced by a plate containing an (a) internal crack and (b) edge crack.
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boundary of the substrate. It coincides with the principal axes of orthotropy for both the substrate and
plate. The relevant engineering material constants for the plate are specified by E,,, G,,, v,., and v,,, and the
substrate is characterized by stiffness coefficients, C;;, with (i, j = 1,2, 6). The displacement components in
(x,y) directions in the plate and the substrate are denoted by (U, V) and (u,v), respectively. The stress
components in the substrate are denoted by ¢,5, with o, f = x,y. The problem posed in this study is to
determine the stress intensity factors associated with both the internal and edge cracks and the two corners
of the reinforcement plate.

Although the solution of the resulting integral equations for the case of an internal crack is rather well-
established, the physical assumptions concerning the edge crack lead to an integral equation of the 2nd kind
with non-conjugate singularities, i.c., its index is not equal to 1, —1 or 0. The commonly employed tech-
niques developed by Erdogan and his co-workers (1969, 1972 and 1973) and Theocaris and Ioakimides
(1977) break down because of the presence of non-conjugate singularities at the edges. The specific con-
tribution of this paper is the extraction of the non-conjugate singularities and the solution of the resulting
coupled integral equations.

3. Formulation of the problem

Subjected to the conditions of traction-free crack surfaces and compatibility along the plate/substrate
interface, the stress field and displacement gradients in the substrate with a crack can be composed of
three loading conditions: (1) a dislocation at a point (x;,y;) in the substrate having a Burger’s vector, b
with components f; and f, parallel and perpendicular to the boundary, (2) a concentrated force acting at
a point (0,3p) on the boundary of the substrate having components f; and f; parallel and perpendicular
to the boundary, and (3) the applied load of a,,(x, £00) = g on the substrate. In view of the concept of
superposition, the stress field and the displacement gradients in the substrate can be expressed in the
form

ox(x,y) = Kifi + Kinfa + Kisfs + Kia fa, (1a)
0y(x,y) = Ko fi + Knofs + Kosfs + Kosfa, (1b)
0 (x,¥) = K31fi + K fs + Kaafs + Kafy + 0o (lc)
and
0
@”(X,Y) = Mi1f1 + Myifs + Mizf3 + Misfa, (2a)
0
50()@)/) = My fi + Mxnfr + My fs + Moufs + P00, (2b)

where f1, f2, f3, and f; are unknown distributed functions and K;; and M;; are the Green’s functions, whose
explicit forms are given in Appendix A. The term f,,0, represents the displacement gradient arising from
the loading of a,,(x, £00) = g, on the substrate in the absence of a crack, and the compliance coefficient
Br = Ci1/(C11Cx — Cp,).

Traction-free crack surfaces are enforced by requiring that

0,(x,£0) =0, c¢<x<d, (3a)

0y(x,£0) =0, c<x<d. (3b)
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The compatibility conditions along the plate/substrate interface are satisfied by requiring that

0 0

@u(ovy)_aU(y)v _2a<y<07 (43)
° 0 )—EV(h/z ), —2a<y<0 (4b)
ayv 7y _ay 7y7 a y ?

where the explicit form of the displacement gradients in the plate in terms of the unknown functions f3, and
f4 are derived in Appendix B.
The dislocation densities f; and f, are related to the crack surface displacements by

Si0) = = o lo(x, +0) ~ olx, ~O)]. (52)
0
folx) = ~ 3 [u(x,+0) — u(x, —0)]. (5b)

Therefore, in the case of an internal crack, the single-valuedness condition of displacements requires that

/dfl(t) dr=0, (6a)

/ o di=o. (6b)

However, these constraint conditions are not applicable in the case of an edge crack.
The surface tractions acting on the reinforcement plate (shear and normal stresses along the interface
between the plate and substrate) are defined as

ny(O,yo) :f3(y0)a axur(ovyo) :f4(y0)7 —2a < Y < 0 (7)

and they must satisfy the force and moment equilibrium conditions leading to

0

3 f(0) dyo =0, (8a)
0

2 f1()dy =0, (8b)
0

[2 Yofa() dyo = 0. (8¢)

3.1. Internal crack

Having a continuous distribution of dislocation, b = (f}, f2), along the crack surfaces, i.e., x; = ¢ and
v =0 for ¢ < t < d, and enforcing the boundary and compatibility conditions, Egs. (3) and (4), result in
the following system of singular integral equations:
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d 0

/ Nii(x, 1) f1(¢ df+/ Nip(x,2)f2(¢) dt + Ni3(x,30)f3(v0) dyo
—2a

T J. t—x
0
+ [ Nia(x,0)fa(0)dyo = (c<x<d), (9a)
—2a n
7'[ j {2_ dl—l—/ N21 X, tﬁ df+/ szx Z‘fz df+/ N23xyo)f3(y0)dyo
0
+ [ Nau(x,00)fa00)d =0 (c <x <d), (9b)
—2a
RO gy S+ [ Nanaoa [ Naos0a [ NsGnso
e Vo — ¥ )0 5,74 31 j 2,12 N 33, 00)7300) Ao
0
4 [ NuGmfiondn =22 (<20 <y <o) (9)
0
LB g R [CNaonman [ Naos0a [ NG mo an
0 ~ Y,(—2a)
+ [ Naa(y,0)fa(n) dyw = — ; (—2a <y <0), (9d)
—2a

where the parameters and the kernels are given in Appendix A. The last two of these integral equations,
Egs. (9¢) and (9d) are of the second kind and can be combined as follows by multiplying Eq. (9d) by —in
and adding to (9¢c) while invoking R, = S|

1 /° o
in | 5, )ﬁ({ol — 79y / M (y,1)f1 () dt +/ My (y, 1) f2(t) dt + ZaMa(J/JO)ﬂb(yo)dyo
’ 2
+ ‘M@%WOMW-J%%+W%&‘w (—2a < y < 0), (10)
—2a 2 )

where the auxiliary function, ¢(y), having ¢*(y) as its complex conjugate is defined as

o) =nfs) +ifs0), (11)

with # = \/R,/S, and y = R|/v/R,S,. The known kernels, M;(y, ), are defined in Appendix A. The solution
to the system of singular integral equations given by Egs. (9a), (9b), and (10) permits the determination of
Si> f2, f3, fa, and  (—2a) subject to the five constraint conditions given in Egs. (6) and (8). The moment
equilibrium condition (8c) accounts for the unknown rotation, ¥, (—2a).

In the integral equations, Egs. (9a) and (9b), the dominant parts of the kernels have only a Cauchy-type
singularity and, therefore, for ¢ > 0, the solutions to fi(x) and f>(x) have the form

P (x)

Ko\

*fﬁ@%f@_dmw_dm, (12a)
Ke o) — P, (x) 12b
7 /2) (x =) (d—e)*’ (126)

where oy = o, = ff; = f, = 1/2 and @, and &, are unknown bounded functions. The constants K, and K,
involving material stiffness coefficients, C;;, are given in Appendix A. As suggested by Muskhelishvili
(1953), the solution to the dominant part of the integral equation of the second kind, Eq. (10), is of the form
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?5()

= P

) ( 1 33.)
with

. . . 1 11—y
o3 —§+lw, ﬁ3 —E—lw, Wlth w—ﬁln (1—H}) (13b)

and ®;(y) is an unknown bounded function.
3.2. Edge crack

The integral equations given in Egs. (9a), (9b), and (10) are also valid in the case of an edge crack for
which ¢ = 0 with the requirement that the junction of plate edge and substrate at the point (x =0,y = 0)
has a common point of singularity for the unknown functions fi, f>, and ¢. In view of Egs. (12) and (13),
the solution forms for the unknown functions f}, f>, and ¢ having a common singularity at (x =0,y = 0)
can be written as

ﬁ(f)_%, O<t<d, (143.)
f(0) tﬁ(iz_(ti)az , 0<i<d, (14b)
d(n) = ®3(0) —2a < yy < 0. (14c)

(=) O +2a)"

However, the kernels N;;, which are bounded in the closed intervals [¢,d] and [—2a, 0] for ¢ > 0, become
unbounded when the pairs of variables (x, ¢), (x, ), and (y,¢) approach the junction point of (x =0,y = 0)
simultaneously. Furthermore for ¢ = 0, the kernels of the integral equations are of the generalized Cauchy-
type. For example, by separating into partial fractions, the kernel Nj; may be expressed as

p+2  22+pp) 22+ pp)
t+x  (p—p)t—px) (o1 —p)(t—pox)’

where (p1,p») = —pF /pP*> —4/2 with p = C, +2 and —4 < C, < co. The integral appearing in Eq. (9a)
can then be expressed as

nCyNy; (X, l) =

0 < (t,x) <d, (15)

! L4 [* A0
/0 N (x,2)fi (1) de c ,:21 ) A dt, 0<x<d. (16)
The variables p; and p, are complex conjugates of each other for —4 < C;, < 0, and real and negative for
C, > 0, meaning that for 0 < x < d, the variables z; are outside the cut [0,d] as shown in Fig. 5. In their
polar form, these variables are defined as z; = rjxei(’f', with 0, == for j=1,2,3, r, =1, r, =|pi|, and
r3 = |po| for C, = 0. For —4 < C), < 0, the definitions of 6, and 65 become 0, = Arg(p;) and 6; = Arg(p,).

The kernel N;; becomes unbounded as ¢ and z; approach zero simultaneously. Such unbounded kernels
influence the nature of the singularity at the point of (x = 0,y = 0). The strength of this singularity can
be determined by utilizing the asymptotic expressions for a sectionally holomorphic function given by
Muskhelishvili (1953). The explicit expression for these asymptotic expressions are given in Appendix C.
Based on these expressions, the integral given in Eq. (16) can be rewritten in the form
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d B 1 3 451(0) ei(nfoj)ﬂ 1
/0 Nu( 0(0)d = o >4, == T h(). (17)

=1 sin (’”jx)ﬂ

Similarly, the dominant part of this singular integral equation, Eq. (9a), can be expressed as

< fi(2) df — ®,(0) cotnfi @(d) cotmay

; 0 f—x d* xﬁ - dﬁ (d _ x)al + GO(Z)~ (18)

All of the singular terms in the integral equations in Egs. (9a), (9b), and (10), including those coming from
the generalized Cauchy kernels, such as that given by Eq. (16), can be obtained by using the asymptotic
relations. These integral equations can then be expressed in the form

8
ZBﬂ( ﬁ 0617062,063)Dk(X())+H()C0) _O ]: 11253545 (19)
k=1

where xo = x or xo = —y, By are known bounded functions, and H; represent all bounded and lower order

singular terms. The unknown functions D; are defined as

e dnxtdb(d —x)" 7 dext T db(d —x)° 7 (2a) (=)' (2a) (=) (2a) 2a + )" (2a)F (2a + )
(20)

in which the functions ®; are non-zero at the end points 0, d and —2a. Thus, multiplying Eq. (18) by
(d—x)", (d —x)", and (2a + y)* and letting x approach d and y approach —2a, respectively, results in

cotmoy =0, (21a)
cotma, = 0, (21b)
cot’ moz + 97 =0 (21c)

whose solutions lead to

1 | 1 1 -
061:052:5, 0(3:§+1(U, w27rln<1+$> (22)

Similarly, multiplying Eq. (18) by x* or 3 and letting both x and y approach zero results in
4
ZR[,(/%)L[ =0, i=1,2.3,4 (23)
j=1
in which R;; are known functions and L; represent the unknown non-zero coefficients defined by

®,(0) ®,(0) Re[®5(0)] Im[<1’3(0)])
dv 7 d2 7 (2a)" 7 (2a)*

(L1, Lo, Ly, L) = ( (24)

For example, the expression for R;;(f) is obtained from the limiting values of Egs. (17) and (18) as

2. 4;el=0p ?,(0
Ru(p N}}l%xﬁ{/ Nui(x, ) fi(¢)de + = / Ail) } {12: +COtTE[3 ;£1> (25)

C), sin nﬁr
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leading to

Aen(}ﬁ

Cysinzf’ (26)

Rll( —Cotﬂﬁ—f—z

The coefficients 4; are all real for C, > 0, and only 4, and 43 are complex conjugates of each other for
—4 < C;, < 0, resulting in real values for Ry (f).

Requiring the determinant of the coefficient matrix of the homogeneous system of equations, Eq. (23), to
vanish leads to the determination of the strength of the singularity, 5. Unlike the bounded stress state at the
singular point of a membrane reinforcement considered by Delale and Erdogan (1982) and Mahajan et al.
(1993), the characteristic equation, Eq. (23), associated with the plate reinforcement, always has a root in
the strip 0 < Re[fl] < 1, which is real and less than one-half. It should be pointed out that if one considers
the symmetric problem for two identical reinforcements along —2a < y < 0 and 0 < y < 2a, f, would be
zero; and instead of Eq. (23), a system of three algebraic equations would exist, leading to a simpler
characteristic equation. Despite this, the physics of the problem requires that the value of f to be the same
for both cases. Indeed, this problem was formulated, and it was observed that the two characteristic
equations lead to identical results for . Details of the asymptotic analysis giving the characteristic equa-
tions for edge crack problems in isotropic and orthotropic half planes reinforced by a single or two
symmetrical plates were given by Mahajan (1991). For a specific value of f§ rendering the characteristic
equation, Eq. (23) to be zero, the system of equations provides three linearly independent equations in the
form

> Sy(B)Li=0, i=1,2,3. (27)

J=1

These three equations serve as constraint conditions in the solution of the singular integral equations, Eqs.
(9a), (9b), and (10), with ¢ = 0.

It is worth noting that the results of § found herein from the asymptotic analysis of a “plate” bonded to
a 90-degree elastic wedge, formed where the crack edge meets the plate edge, agree exactly with the con-
tinuum elasticity results obtained for two 90-degree wedges where one of the wedges is perfectly rigid. This
was verified by comparing results for the isotropic case in the present analysis with the results reported by
Bogy (1970). It is in the nature of the plate model adopted in this study that f is completely independent of
the elastic properties of the plate. Because y = R;/+/R»S, is dependent on the elastic constants of the
substrate only, as observed in Eqgs. (13b) and (22), the nature of the singularity at the other end of the plate
y = —2a, which does not involve the edge crack intersecting the surface, is also independent of the elastic
properties of the plate.

4. Solution of the integral equations

Prior to the numerical solution of the coupled integral equations, Eqgs. (9a), (9b), and (10), they are
normalized by introducing

d—c d+c d—c d+c
X = ) V—f—T, I—TVO+T7 -1 <(rn) <1, (28a)

y=a(s—=1), w=a(so—1), —1<(s,5)<]I (28b)
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leading to
P 7
;/ fol( Ord _|_/ Hll r 7’0>g1<l’0 dr0+/ H12 r I"o)gz(l"o dr0+/ H13 r S())g3(S())dS0
L ro—
20
+ / Hya(r,50)g4(s0) dso = g1 (r) = KO, (29a)
-1 n

P; ! 7
—2/ m 0+/ Hy(r,r0)g1(r0) dr0+/ Hy(r,r0)g2(r0) d”o+/ H)3(r,50)g3(s0) dso

Y 1 7o — 1

" / Haa(risn)g3(50)ds0 = () =0, (29)

P S
—3/ g3( ) dSo + R3g3(s / H;1(s,70)g1(r0) dro +/ H3y(s,70),82(r0) dr0+/ H33(s,50)g3(s0) dso

n 150 —
1
. oo . ¥,(—2a)
+ [ Halssngio0ds = as(s) = 20+ ig P (29¢)
_1 Sz R2
in which g, g,, and g3 with its complex conjugate g; are the unknown functions and ,(—2a) is an un-
known constant. The definition of the parameters P; and the kernels Hj; are given in Appendix A. In the case
of an internal crack, the constraint conditions of Egs. (6) and (8) are rewritten as

I i
/ gi(ro)dro =0, / g2(ro)dro =0, (30a,b)
-1 .

1

/_1[g3(50) — &;(s0)]dso = 0, /_l[g3(so) + g3(s0)]dso = 0, /—1(S0 —1)[g3(s0) + g5(s0)]dso = 0.
(30c,d,e)

In the case of an edge crack, the first two constraint conditions, Egs. (30a) and (30b), enforcing single-
valuedness are no longer valid. However, they are replaced with the three conditions arising from the
asymptotic analysis, Eq. (27). Invoking the normalization parameters given in Eq. (28), these constraint
conditions are rewritten as

hi (B)Gi(=1) + hia(B)Ga(=1) + M3 (B)G3(1) + hia(B) G5 (1)

ho1(B)G1(=1) 4 haa (B)Ga(=1) + ko3 (B) Gs(1) + haa(B) G5 (1)

h31(B)G1(=1) + hsa(B)Ga(—1) + k33 (B)G3(1) + haa(B) G5 (1)
in which #;; are expressed in terms of S;;.

The unknown functions, fi, f>, and ¢ whose solution forms are given by Eqgs. (12) and (13) are rewritten
in terms of the normalized variables as

)

(31)

0
0
0

K,, _ N G] (}")
5 i) =ai(r) e (32a)
Ke Y _ Gz(?‘)

f2(x) = g2(r) 0 (1" (32b)
D) = gs(s) = —20) (32¢)
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for the internal crack and as

K, _ B Gy (r)
5 i) =a() a0 (33a)
Ke o) = oo (r) — Ga(r)
5 (%) = &(r) T (33b)

_ §) = G3(S)
PO =8 = i

for the edge crack. The unknown auxiliary functions, G,(r), G>(r), and Gs(s) permit the evaluation of the
singular stresses around the crack tips and at the end points of the reinforcement plate. For the internal
crack, the stress intensity factors representing the singularities are defined as (Mahajan et al., 1993)

(33c¢)

) = lim 29 (= 4 ,(0) = lim 200~ ) = ) (155 (34a)
d—c\™®

fld) = lim 25 - @), (5,0) = lim 2500 ) 500 = 1) (45 ) (34b)
—c B

ki(e) = 1im 2% (c —x)"6,(x,0) = — lim 2° (x — o)h %ﬁ (x) = —Gi(—1) (d 5 ) : (34c)
—c Ba

ka(c) = lim 2%(c —x)"0,,(x,0) = —lim 2% (x - o) %fz(x) = —Gy(—1) (d 5 ) , (34d)

k(0) = 1k (0) + ik2(0) = lim 27 (=) [10:(0, ) + 0y (0,9)] = Gs(1)a", (34¢)

k(=2a) = nki(=2a) + iky(=2a) = lim 25 (y +24)"[19.(0, ) +i05(0,7)] = Gs(~1)a™. (34f)

Similarly, for the edge crack they are defined as

) = im 2 (s — )" 1, 0) = lim 2~ 260 = G0 (45 ) (350)

ky(d) = 1im 2" (x — d)* 0, (x, 0) = lim 27(d — x)* %fz(x) = Gy(1) (d 5 C) (35b)

K(0) = 11 (0) + ik (0) = 1im 27 (=) 10 (0,) + 70, )] = G (1), (35¢)

k(=2a) = nki(=2a) + iky(=2a) = lim 2%(y +24)"[16.(0,) +i0y (0,7)] = Gs(~1)a™. (35d)

By computing the crack closure energy, in the orthotropic region under consideration, the strain energy
release at a given crack tip may be obtained as

T kf kg
g—z(z?ﬁz)' (36)
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The complexity of the kernels in Egs. (9a), (9b), and (10) requires that the singular integral equation be
solved numerically. The procedure involves the reduction of the integral equations and constraints to a
system of algebraic equations using the collocation technique introduced by Miller and Keer (1985) and
later extended by Quan (1991) to include the generalized Cauchy kernel, and by Kabir et al. (1998) to
consider integral equations with logarithmic-, Cauchy-, and Hadamard-type singularities. In this technique,
the quadrature interval [—1, 1] is partitioned into a series of subintervals over which the unknown functions,
G;, with i = 1,2, 3, are approximated by quadratic Lagrange interpolation polynomials. The integration
points, r; or sy, are at the ends and at the midpoint of each subinterval obtained by dividing the interval
[—1,1] into N; subintervals associated with each G;. The collocation points, r; or s;, are defined at the
midpoint of two consecutive integration points, i.e., r; = (ro; + ro+1))/2 or s; = (so; + Soj+1))/2, with
j=1,2,...,2N,. Thus, the unknown functions are approximated over each subinterval k (fy_; <¢<tys1)
by

Gi(l‘) ~ Gi(Zkfl)[(t — 121()2/2]’112( — (f — tZk)/2hk] + Gi(Zk)[l — (l — t2k)2/hi] + Gi(2k+l)[(t — 1‘21()2/2hi
+ (¢ — tar) /2h], (37)

where G = G;(t), with i = 1,2, 3, and h; = (t2+1 — tx-1)/2, with ¢ representing either r, or so. As a result
of this discretization, Egs. (29), (30), and (31) can be written as

p, 2l N+ W41 N3+
— wii(ry) Gy + Hyy (1), 70:)01,Gri) + H (7, 10 )02:Gogiy + Hy3(7j, 50:)03:Gs)
3 (r) ; > 0i) ; 2 70i) ; )
2N3+1
+ Z H14(}”j,S(),')U;G§(l—) ZQI(”j)7 ]: 1a"'72N17 (383)
pa
p, 2t W+ Wy +1 WN5+1
- wai(r7) Gay + Z Hy\ (ry,70:)v1,Gry) + Z H (7}, 70:) 2Gagy + Z Hys (7, 80i)v3iG3(s)
=1 i=1 i=1 i=1
2341
+ > Haa(ry,s0)05,Gygy = qa(ry),  j=1,...,2Nn, (38b)
i1
P 2511 N+ 1 Wy 41
B s ZBmGz Irm) +— Z w3 (s;) Gy + Z Hy (57, 70:)v1:Ghy + Z H3y (57, 701)02:Gagi)
- ;)" w i—1 i=1 i=1
2N3+] 2N3+1
+ Z His(s;,501)03:Gi) + Z H34(Sj,S0i)U§,-G§(,-) =q(s;), j=1,...,2N; (38¢c)

i=1 i=1

subject to, in the case of an internal crack,

2N +1
Z v1;G1) = 0, (39a)
i=1
2Ny +1
> 102Gy =0 (39b)
i=1

or, in the case of an edge crack,
hii(B)Giay + hia(B)Gaqry + s (B) Gaany 1) + ia(B) Giang 41y = 0 (40a)
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ho1 (B) Gty + haa (B)Gay + has(B) Gaawy 1) + 124 (B) Gy, 1) = 0, (40b)
h31 (B) Gty + h32(B)Gay + haz(B) Gaawy 1) + h3a(B) Gy, 1) = 0 (40c)
and

Wit

Z U3iG3(i) - U;-G;m = 0) (413)
i1

2N3+1

Z U3iG3(i) + U;,*G;(,‘) = 0; (41b)
p

Wyt

Z [sor — 1][U3iG3(i) + Uﬁ,-Gﬁ(,-)} =0 (41¢)

i=1

in which 7 = j— 1 or j — 2 for odd and even values of j, respectively, and »; indicates the number of in-
tegration intervals. The typographical error-free form of the singular weight functions, w;(7;), w;(s;), and v;,
and the Lagrange coefficients, B,,, are given by Kabir et al. (1998). Finally, the discrete form of the singular
integral equations, Eq. (38), and constraint equations, Egs. (39)—(41), can be cast into the form

A]','Gi:qj, l.:1,2,...7N,j:1727...,M. (42)

In the case of an internal crack, the number of unknowns, G; is equal to the number of equations, i.e,
N=M=1+ 22:12Nk + 1, leading to a unique solution. However, in the case of an edge crack, the number
of unknowns, G;, is one less than the number of equations, i.e, M = N + 1, leading to an over-determined
system of equations. Therefore, the system of equations is solved in the sense of least-squares minimization.

5. Numerical results

In the solution of the integral equations concerning both the internal and edge crack configurations, the
number of subintervals associated with each unknown function is chosen as 200 in order to ensure their
convergence. The parameter C,, the measure of material orthotropy, is useful in characterizing the an-
isotropy of orthotropic materials and also crystals with other symmetries. However, it is very difficult to
give a simple physical interpretation for C,. Results are given for five different substrate materials. The
properties of these materials and the corresponding values of C, are shown in Table 1. Since C, = 0 cor-
responds to an isotropic material, Material 3 may be considered as ““almost” isotropic. The material of the
cover plate is assumed to be isotropic with shear modulus G = 5.9931 x 10° Pa and Poisson’s ratio v = 0.3.

These material properties for the substrate and the cover plate are the same as those given by Mahajan
(1991).

Table 1

Stiffness properties for substrate materials
Material Cy; x 10" Pa Cj> x 10'° Pa Cy x 10" Pa Cys x 10'° Pa C,
1 1.0100 2.7430 0.3592 0.4905 6.8222
2 0.5966 0.6764 0.1712 0.5592 3.0358
3 0.2088 0.9012 0.2101 0.5971 —-0.0022
4 1.6800 6.6000 1.6800 8.4000 —1.0944
5 1.1904 5.3840 1.1904 5.9520 -1.3137
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The validity of the present analysis is examined by considering Material 3 for the substrate. For this case,
the material properties of the plate and the substrate are close to each other. As shown in Fig. 2, the
normalized stress intensity factors associated with the internal crack tips approach unity as the crack of
fixed length specified by ¢y = (d — ¢)/2a = 1 moves away from the boundary, recovering the solution for an
infinite isotropic plate with an internal crack. Also, for ¢ — 0, the normalized stress intensity factor of
ki(d)/(2%a0\/d/2) = 1.121 is recovered for an edge crack in an isotropic half-space. Material 1, with the
highest degree of material orthotropy, is considered in order to capture the effect of material orthotropy on
the stress intensity factors.

Internal crack: For the case of an internal crack, the normalized stress intensity factors at the crack tips
and at the corners of the plate are given in Tables 2 and 3 for a fixed normalized crack length,
¢y = (d — ¢)/2a = 1, and plate thickness-to-length ratios of #/a = 3, 5 and 7 while varying its distance from
the boundary. The parameter sy = (d + ¢)/2a indicates the distance from the boundary to the center of the
crack. The results confirm the expected trend that the stress intensity factors at the crack tips increase with
decreasing cover plate thickness and decreasing crack distance from the substrate boundary. A similar
observation is also valid for the stress intensity factors at the corner of the plate aligned with the crack.
Note that the shearing (mode II) stress intensity factors are small in comparison with the opening (mode I)
values. This leads to the conclusion that sub-critical crack growth will be predominantly under mode I
conditions. In Tables 4 and 5, the crack distance from the boundary, so = (d + ¢)/2a = 1, is fixed and the
normalized crack length denoted by the parameter [y = (d — ¢)/2a is varied for plate thickness-to-length
ratios of /a = 3, 5 and 7. As expected, the stress intensity factors at the crack tips increase with increasing
crack length.

k1
»
(S
I

c.f(d-c) /2

2.5 |— k. (c)

S ka-o7z

k, (d)

o,{(d-c) /2

Normalized stress intensity factors,

1 2 3 4 5

d+c
2a

Normalized distance from boundary, s=

Fig. 2. Normalized stress intensity factors for an internal crack in an “almost” isotropic substrate (Material 3) for varying crack depth
from the boundary.
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Table 2
Normalized stress intensity factors at the internal crack tips for varying crack distance from boundary and for various plate thicknesses
(Material 1, ¢y = (d —¢)/2a = 1)

50 = d+c ki(c) ki (d) ka(c) ko (d)
2a a0/ (d —¢)/2 a0/ (d—c¢)/2 a0/ (d—c¢)/2 o0/ (d —¢)/2

alh=3

1.01 3.010 1.208 0.292 -0.066
1.05 1.814 1.154 0.056 -0.049
1.10 1.503 1.126 0.015 -0.040
1.50 1.109 1.055 -0.016 -0.018
2.00 1.047 1.031 -0.014 -0.011
3.00 1.018 1.014 -0.009 -0.006
5.00 1.007 1.006 -0.004 -0.003
a/lh=5

1.01 3.016 1.218 0.191 —0.058
1.05 1.832 1.164 0.023 —-0.040
1.10 1.522 1.134 -0.001 —0.031
1.50 1.119 1.059 -0.013 -0.012
2.00 1.051 1.033 -0.010 —0.008
3.00 1.020 1.015 —-0.006 —-0.004
5.00 1.007 1.006 -0.003 -0.002
alh="1

1.01 3.022 1.225 0.129 -0.051
1.05 1.844 1.171 0.004 -0.034
1.10 1.535 1.140 -0.008 -0.025
1.50 1.126 1.061 -0.010 -0.009
2.00 1.054 1.034 -0.008 -0.006
3.00 1.021 1.015 —0.005 -0.003
5.00 1.007 1.006 -0.002 -0.001

Edge crack: In the presence of an edge crack, the strength of the singularity,  (Eq. (14c)) is obtained
from the asymptotic analysis for the junction of a plate corner and edge crack surface in the substrate. The
parameter, f is not dependent on the plate material properties but the half-space material properties. Its
variation which does not appear to have a functional relationship is presented in Table 6 for materials 1-5
with varying degree of orthotropy controlled by the dimensionless anisotropy parameter, C;,. The nor-
malized stress intensity factors at the tip of an edge crack and at the corners of the plate for varying
normalized crack length d/a and plate thickness-to-length ratios of #/a = 3, 5 and 7 are presented in Tables
7 and 8, respectively. The stress intensity factors at the crack tip for both modes I and II increase as the
crack tip approaches the boundary. As shown in Fig. 3, the stress intensity factors for all three plate
thicknesses reach the limiting value of 1.297 for the opening mode as the crack length becomes larger than
the length of the plate. As presented in Table 7, the stress intensity factors for the shearing mode decrease
for increasing crack length. The normalized stress intensity factors at the junction of the plate and crack
surface are small in comparison with the values at the other edge of the plate. As the crack tip approaches
the boundary, the stress intensity factors of both modes associated with the corners of the plate increase.
The comparison of the results in Table 7(materials 1 and 3), reveals the effect of material orthotropy on the
stress intensity factors for an edge crack. The results in these tables also capture the effect of reinforcement
on the stress intensity factors. As expected, the effect of the reinforcement on the stress intensity factors
diminishes as the crack tip moves away from the boundary. In Table 7, as the crack tip moves away from
the boundary, the normalization of the limiting value of (k;(d)/(c9+/d/2) = 1.370)/2F with g = 0.28937205
yields the well-known result of 1.121 for an edge crack in an isotropic half-space.
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Table 3
Normalized stress intensity factors at the plate corners in the presence of an internal crack for varying crack distance from boundary
and for various plate thicknesses (Material 1, 4y = (d — ¢)/2a = 1)

o = d+c nki(—2a) + ik, (—2a) 1k1(0) + ik2(0)
’ 2a 0pa* ooal
a/h=3

1.05 0.180 — 0.093i 0.831 + 0.390i
1.10 0.197 — 0.101i 0.570 + 0.270i
1.50 0.231 —0.123i 0.241 4 0.1401
2.00 0.220 — 0.123i 0.190 + 0.117i
3.00 0.197 — 0.114i 0.173 + 0.1061
5.00 0.180 — 0.106i 0.169 + 0.102i
alh=5

1.05 0.137 — 0.069i 0.699 + 0.311i
1.10 0.151 — 0.0761 0.459 4+ 0.213i
1.50 0.186 — 0.094i 0.185+0.107i
2.00 0.182 — 0.0951 0.153 4 0.0901
3.00 0.166 — 0.088i 0.145 + 0.081i
5.00 0.153 — 0.082i 0.144 4+ 0.0791
alh="1

1.05 0.114 — 0.056i 0.605 + 0.2661
1.10 0.126 — 0.062i 0.382 + 0.1801
1.50 0.159 —0.0781 0.151 + 0.089i
2.00 0.158 — 0.07%i 0.130 + 0.074i
3.00 0.145 —0.0731 0.126 4 0.0671
5.00 0.134 — 0.068i 0.126 4+ 0.065i

Table 4

Normalized stress intensity factors at the internal crack tips for varying crack length and plate thickness (Material 1,
so=(d+c)/2a=1)

=2 ki(c) ki (d) ka(c) Ky (d)
2a () (d—(,)/z () (d—(,)/z on/(d—c)/z () (d—(,)/z

a/h=3

0.10 0.980 0.983 -0.010 -0.011
0.25 0.987 0.991 -0.010 -0.012
0.50 1.028 1.017 -0.010 -0.015
0.75 1.164 1.064 -0.005 —-0.024
0.90 1.464 1.118 0.018 —-0.039
a/lh =75

0.10 0.986 0.987 —-0.008 —-0.008
0.25 0.994 0.996 -0.008 -0.009
0.50 1.037 1.022 —-0.009 -0.011
0.75 1.178 1.072 -0.008 -0.018
0.90 1.481 1.127 0.002 —-0.031
alh="1

0.10 0.989 0.990 —-0.006 -0.007
0.25 0.998 0.999 -0.007 -0.007
0.50 1.043 1.026 -0.007 -0.009
0.75 1.188 1.076 -0.009 -0.015

0.90 1.493 1.133 —-0.006 -0.025
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Normalized stress intensity factors at the plate corners in the presence of an internal crack for varying crack length and plate thickness

(Material 1, s = (d +¢)/2a = 1)

I = d—c nky(—2a) + ikx(—2a) 1k (0) + ik, (0)
0 2& goail goa/fs
alh=3
0.10 0.171 — 0.1011 0.171 +0.1011
0.25 0.175 —0.102i 0.177 4 0.104i
0.50 0.186 — 0.1051 0.206 4 0.1171
0.75 0.195 — 0.104i 0.304 +0.1571
0.90 0.186 — 0.097i 0.538 +0.253i
a/h=>5
0.10 0.145 — 0.078i 0.145 +0.078i
0.25 0.147 — 0.079i 0.149 4 0.0801
0.50 0.154 — 0.081i 0.166 4 0.0911
0.75 0.156 — 0.080i 0.237 4 0.123i
0.90 0.145 — 0.073i 0.435 4 0.2001
alh="1
0.10 0.127 — 0.0651 0.127 4 0.0651
0.25 0.129 — 0.065i 0.129 4 0.0671
0.50 0.133 — 0.067i 0.140 4 0.0751
0.75 0.132 — 0.065i 0.192 4 0.103i
0.90 0.121 — 0.060i 0.363 4 0.1691
Table 6
Strength of singularity for the junction of the plate corner and an edge crack surface of the substrate for Materials 1-5
Material p
1 0.28309954
2 0.20241910
3 0.28937205
4 0.27884158
5 0.29999538
Table 7
Normalized stress intensity factors at the tip of an edge crack for varying crack length and plate thickness (Materials 1 and 3)
d/a ki(d) k(d)
[} d/2 O'()\/d/z
a/lh=3 alh=5 a/lh="1 a/h=3 a/h=>5 alh="1
Material 1
0.10 1.553 1.499 1.460 0.102 0.074 0.057
0.20 1.407 1.384 1.367 0.047 0.034 0.026
0.50 1.315 1.312 1.309 0.008 0.007 0.006
1.00 1.298 1.298 1.298 —-0.002 0.000 0.000
1.50 1.297 1.297 1.297 -0.003 -0.001 -0.001
Material 3
0.10 1.773 1.700 1.643 0.164 0.128 0.102
0.20 1.553 1.521 1.495 0.082 0.065 0.052
0.50 1.405 1.401 1.396 0.018 0.016 0.014
1.00 1.373 1.373 1.373 —-0.001 0.000 0.001
1.50 1.370 1.370 1.370 -0.002 -0.001 -0.001
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Table 8
Normalized stress intensity factors at the plate corners for varying edge crack length and plate thickness (Material 1)
d/a nki(—2a) + ikx(—2a) ki (0) + ik>(0)
Goa”® ooal

a/h=3

0.10 0.137 — 0.0891 0.082 — 0.023i
0.20 0.127 — 0.085i 0.054 — 0.0151
0.50 0.091 — 0.068i 0.018 — 0.0051
1.00 0.040 — 0.0401 —0.502 + 0.014i
1.50 0.009 — 0.021i —0.160 + 0.0451
a/h=5

0.10 0.118 — 0.0701 0.082 — 0.023i
0.20 0.112 — 0.0671 0.049 — 0.014i
0.50 0.086 — 0.054i 0.005 — 0.002i
1.00 0.044 — 0.032i —0.073 4 0.0201
1.50 0.017 — 0.0171 —0.208 + 0.058i
alh=1

0.10 0.104 — 0.0591 0.080 — 0.022i
0.20 0.100 — 0.056i 0.042 — 0.012i
0.50 0.078 — 0.0461 —0.004 + 0.0011
1.00 0.043 — 0.028i —0.089 4 0.0251
1.50 0.019 — 0.0151 —0.247 4 0.0681

1.25 1 l 1 | 1 | 1 l 1 1 |
0 0.25 0.5 0.75 1 1.25 1.5

Normalized crack length, %

Fig. 3. Normalized stress intensity factors for an edge crack in an orthotropic substrate (Material 1) for varying crack length for a
range of plate thickness-to-length ratios.
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6. Conclusions

By solving the coupled singular integral equations with either a simple Cauchy kernel or with a gene-
ralized Cauchy kernel, this study investigated the effect of a reinforcement plate on the stress intensity
factors of either an internal crack or an edge crack in an orthotropic substrate under uniform loading. The
analysis revealed that the stress intensity factors at the internal crack tips increase with decreasing cover
plate thickness and that they also increase with decreasing crack distance from the substrate boundary.
Also, the normalized stress intensity factors at the crack tips increase with increasing crack length. The
stress intensity factors at the tip of an edge crack and at the corners of the plate for both modes I and II
increase as the crack tip approaches the boundary. The stress intensity factors of both modes associated
with the corners of the plate also increase as the crack tip approaches the boundary. This study permits the
investigation of the influence of material orthotropy on the stress intensification or the energy release rate to
predict cracking and its direction.

Appendix A
The Green’s functions, K;; and M;;, in Egs. (1) and (2) due to a pair of dislocations at point (xi,y)
and concentrated forces at (0,y) in the half-plane were derived by Pande and Chou (1971) and Wu and

Chou (1982), respectively, as
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PO, + PO PO, + PO
§2 — 81 Sady — s1d)
P = P =
| C12+d 4 Ci, ) & —d, Ces,
S]dz—Szd] d]dz(Sz—Sl)
Ll LN = Ceq | + A2 75
O & — di 11, 0} 66{ + & —d; )
dlzl_ﬁls%, dzzl_ﬁﬂ%
Bss1 Bss2
Cu Cy Ci ﬁ§ — Bifr— 1 B
=—, =——, = 1 —’——7 = ==,
b Cess > Ces Py Ces Ps By & Bi



6410 R. Mahajan et al. | International Journal of Solids and Structures 40 (2003) 6389-6415

The parameters s; and s, (Re(sy,s2) > 0) are the roots of the characteristic equation
s*+ Bys® + Bs = 0.

Regardless of the nature of the roots s; and s,, the constants P, Py, O, and Q, are always real. Also, it can
be shown that R; = S for all orthotropic materials.
The kernels of the singular integral equations given by Egs. (9a), (9b), and (10) are defined as

N(xt)—i Ch+4_ 2x+t(Ch+2)
WY TR\ 200+ 1) A (G xt+ 27
le(x, l) = 07
VG 40y
Niz(x, ) = T 2 ) T a0
K, {x* + 27(Cp + 2)x23 + 2y}
VG, + 413
N14(x7J/0) = - 4 2 2.2 4 470
K, {x* + A7(Cy + 2)x%y5 + 27y }
N21(x, l) = 07
2 Ch+4 2x +t(Cp + 2
Ny(x,t) = — -5 (G +2) 5 (0
nCy | 2(x+1¢) x>+ (Ch+2)xt + ¢
JC,, +4/l3xy§
N23(x7y0) = - 4 2 b2 "4 47
nK{xt + 27(Cp + 2)x%y5 + 2735}
Cy + 4iypox®
N24(x7J’0) = 4 2 2.2 YRR
TR + 2(Cot 207 + i)
K, (Cy + 4117y
N31(y7t): ﬁZZ (2h 2 ) )jz )
TESz{(tz + 2 yz) + CpA y2t2}
K, (Cy + 4)F
]\]32()/7 t) — ﬁ22 ( h ) )y

1, {(2 + 152 + Gyt

1 Di?
N3z (y,00) = =< {CJFT}H(J/ =),

A\
Dh

Nu(y,n) = _2_S2(y —)H(y —n),

K, (C, +4)F
Nu(y,1) = — ez g - ) yz ,

TR { (2 + 77y?)” + ChAi™y* P}

K.(Cy+4)7

]\]42(.)}7 l) _ ﬁ22 ( h )

TPRA (2 4 22) + CiHPe)
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Dh

Nuz(y,00) = R (v =»)H(y — ),

B D
Nua(y,30) = = - H(y =) + 55~ (7 = 30)"H(y = 30).
2 2
The kernels M; in Eq. (10) are defined in terms of N;; as
My(y,t) = N3 (v,t) — inNai (y, 1),

M;(y,t) = N3y (v, t) — inNp (v, 1),
1 . N (v, .
M;(y,n) = 3 [ — iN33(y,0) — nNa (v, 00) + M(;yo) - 1]\’44(%)/0)] ,

N34 (v, 30)

1. .
My(y,») = 5 [1N33(J/7y0) + nNaz (v, 00) + - 1N44(y,y0)} .

The parameters and the kernels in Eq. (30) are defined as

P=2, P=2, P=-i, R=-
1 — Kna 2 — Ke7 3 — ) 3 — ))7

d—c d—c

Hy(r,ro) = Nu(x,t), Hp(r,r) = Nia(x, 1),
a . 1 af. 1

Hy(r,s0) = 3 iNy3(x, 30) +HN14(X,J’0) , Hu(r,s0) = 3 iNy3(x, 30) +HN14(X7J/0) ;
d—c d—c

Hy(r,ro) = Noi(x, 1), Hy(r,rg) = N (x,1),

a . 1
Haron) = { = Vst + 2 Maeon) |, Harosn) =

N

d—c d—c
Ml(yvt), H32(Sar0): K MZ(yvt)7

n e

Hy(s,r) =
His(s,50) = aMs(y,n0),  Haa(s,80) = aMa(y, ).

Appendix B

. 1
{1N23(x7y0) + EN24()C7)/0)}7
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From the equilibrium of a section of the plate subjected to surface tractions (shear and normal stresses
along the interface between the plate and substrate) as shown in Fig. 4, the resultant membrane force, N,,,

transverse shear force, 0,,, and resultant moment, M,,, are expressed in the form
y

NWO’) = / S3(0) dyo,

—2a

y

0,(v) = Sa(w) dyo,

—2a
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2a

hi2
'

—]>/

\ A2

Fig. 4. Free-body diagram of the plate segment bonded to the substrate.

M, (y) =g ) S3(n) dyo + L (v —10)f2(00) dyo.

In the plate, the displacement component in the thickness direction is represented by U = Uy(y) and, in
the horizontal direction by ¥ = V;(y) —x,(v), in which () denotes the rotation of the plate about
the z-axis. The mid-plane displacement components are denoted by U, and ¥, in x and y directions,
respectively. Based on these displacement representations, the strain components of interest may be
expressed as

d d
&y (X, ) = & () — xd—y%(y),

m@=%%@—%@~

Utilizing these kinematic relations in conjunction with Hooke’s law under plane strain conditions while
including the shear correction factor of 5/6 leads to

d V(g,y) = CN,,(») hd ¥, (),

dy 2dy
d = DM,

@‘//y(J’) = yy(y)a

d U, = B

& o) =¥,(0) —BOy()

in which the constants B, C, and D are defined in terms of engineering material constants as B = 6/hG,,,
C=(1-wv,v,)/hE,,, and D = 12(1 — v,v,,)/I’E,,.

Substitution of the resultant forces, N,, and Q,,, and moment, ,,, in terms of the shear and normal
stresses, f3(v) and f4(y), gives the displacement gradients along the interface between the plate and substrate
as follows

S U0 =b (245 [ -matmdn+3 [ o-whondn -5 [ s0ndn
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0 Dn? 7 Dh (7
3,/ (h/2,y) =~ (C + —) / S00)dyo — —- / (v = 20)£200) dyo
y 4 —2a 2 —2a

in which  (—2a) is an unknown constant representing the rotation at x = —2a.

Appendix C

As given by Muskhelishvili (1953), a sectionally holomorphic function defined by

d r
F‘(Z,‘):l Mdt, i:1,2,

T J. t—z;

G(1)
(d =0 (t—c)
has the following asymptotic expression near the end points ¢ and d:

LS, Gl &t

f() = 0<Re(o,p) <1, c<t<d, Gc)#0, Gd)#0

T J. t—z (d—c¢)" sinmp (z; — ) +h(z1),
L fe . Gld) 1 1
o T dt——(d_c)/f sin 7o (zz—d)“+s(22)'

As sketched in Fig. 5, outside the cut defined by [c, d], the complex variables, z;, are expressed as

zi=c+rx—c)e’, 0<0, <2n,

22:d+r2(dfx)ei02, 77I<92<TE.
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After substituting for z; and z,, and separating the principal parts, the asymptotic expressions become

U, Gl et

. h(x),
T J. t— 2z (d—C)x SlnTCﬁ r{g(x_c)ﬁ+ (X)
L[ s G(d) e 1
P &dt:_ ()ﬂe' B ;T s(x),
nTJ). t—2 (d —c)" smma 5 (d — x)
24 Zy o
>
<o
> &
< 7
<
0
0, 2
¢ d

Fig. 5. Description of the points z; and z, in relation to the ends of cut.
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where /(x) and s(x) are either bounded or have singularities that are a lower order than « and f. These
asymptotic expressions are suitable for the behavior of singular integral equations with the generalized
Cauchy kernels. Also derived by Muskhelishvili (1953), for the dominant part of the first singular integral
equation, the asymptotic expression near the end points is expressed as

1147 df — G(c) cotmf  G(d) cotmy
). t—x  (d—¢) (x—c)ﬁ (d—c)ﬁ (d —x)*

+ Go(z), c<x<d

in which F,(z) and Gy(z) are either bounded or may have singularities that are a lower order than o and /.
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